Abstract:
A back-illuminated image sensor has a converting layer 21, charge collecting portions 24, and suppressing regions 23 and 29. The converting layer 21 for converting an incident beam into signal charges is formed on one side of an incident face 8 on which an incident beam is irradiated. The converting layer 21 is provided for each of pixels arranged in two dimensions. The charge collecting portions 24 for collecting signal charges generated in the converting layer 21 extends from the converting layer 21 to a surface 22 opposite to the incident face 8. The suppressing regions 23 and 29 for suppressing the flow of the signal charges from the converting layer 21 to peripheral circuits 26 is formed between the converting layer 21 and the peripheral circuits 26.
Abstract:
A fast imaging device 32 has a charge signal converter 33, a charge signal accumulator 36 and a charge signal transporter 37. A charge signal accumulator 36 is provided to each charge signal converter 33. A charge signal accumulator 36 extends linearly while inclining with respect to a line L2 connecting charge signal converter 33. The other end of a charge signal accumulator 36, connected at one end thereof to a charge signal converter 33 constituting a corresponding column, merges to a charge signal transporter 37. This construction reduces noise and increases a frame rate.
Abstract:
A back illuminated imaging device 1 comprises a plurality charge blocking regions 19 which are arranged on a front surface 12 side, embedded in CCD charge transferring paths 21, and in which a first thickness T1 measured from the front surface 12 of first portions 19a extending along the CCD charge transferring paths 21 is larger than a first thickness T2 of second portions 19b extending along channel stops 20.
Abstract:
An ultra-high speed image sensor is a frame transfer type. A charge corresponding to an intensity of a incident ray is generated at an element of a charge transfer path corresponding to each window. The generated charge is transferred on the charge transfer path by voltages applied from the charge transfer electrodes to. Each of the charge transfer electrodes to has a larger size in a charge transfer direction at portions corresponding to the window than that at portions covered with the intercepting film.
Abstract:
A high-speed image sensor has a plurality of signal converting means (30) for generating electric signals corresponding to an incident light intensity and a plurality of electric signal recording means (33) for recording electric signals output from corresponding signal converting means (30). The electric signal recording means (33) is linearly shaped and has a read-out line (58a) for each of longitudinal sections thereof. The read-out line (58) is used for directly reading out the electric signals out of a light receptive area.
Abstract:
A backside-illuminated multi-collection-gate image sensor is expected to achieve ultra-high-speed imaging. Signal electrons generated by incident light are collected to the pixel center of the front side and distributed to multiple collection gates placed around the center at a very short time interval. The temporal resolution is measured by the spread of arrival times of signal electrons to a collection gate. The major cause of the spread is mixing of signal electrons generated near the pixel border travelling a longer horizontal distance to the pixel center and those generated near the pixel center. Suppression of the horizontal travel time effectively decreases the standard deviation of the distribution of the arrival time. Therefore, devices to suppress the effects of the horizontal motion are introduced, such as a pipe-like photoelectron conversion layer with a much narrower cross section than the pixel area and a funnel-like photoelectron conversion layer.
Abstract:
A sample S is irradiated with a two-dimensionally spread ray of laser light to simultaneously ionize substances within a two-dimensional area on the sample. The resultant ions are mass-separated by a TOF mass separator 4 without changing the interrelationship of the emission points of the ions. The separated ions are then directed to a two-dimensional detector section 7 through a deflection electric field created by deflection electrodes 61 and 62. The two-dimensional detector section 7 consists of a plurality of detection units 7a arranged in parallel, each unit including an MCP 8a, fluorescent plate 9a and two-dimensional array detector 10a. The magnitude of deflecting the flight path of the ions by the deflection electric field is changed in a stepwise manner with the lapse of time from the generation of the ions so that a plurality of mass analysis images are sequentially projected on each detection unit 7. When the mass analysis image shifts from one detection unit to another, the data acquisition operation by the two-dimensional array detector in the previous detection unit is discontinued. As a result, a predetermined number of the latest images are held inside the detector. Thus, the measurement time can be extended to widen the measurable mass-to-charge ratio range, while ensuring a high mass resolution.
Abstract:
A sample S is irradiated with a two-dimensionally spread ray of laser light to simultaneously ionize substances within a two-dimensional area on the sample. The resultant ions are mass-separated by a TOF mass separator 4 without changing the interrelationship of the emission points of the ions. The separated ions are then directed to a two-dimensional detector section 7 through a deflection electric field created by deflection electrodes 61 and 62. The two-dimensional detector section 7 consists of a plurality of detection units 7a arranged in parallel, each unit including an MCP 8a, fluorescent plate 9a and two-dimensional array detector 10a. The magnitude of deflecting the flight path of the ions by the deflection electric field is changed in a stepwise manner with the lapse of time from the generation of the ions so that a plurality of mass analysis images are sequentially projected on each detection unit 7. When the mass analysis image shifts from one detection unit to another, the data acquisition operation by the two-dimensional array detector in the previous detection unit is discontinued. As a result, a predetermined number of the latest images are held inside the detector. Thus, the measurement time can be extended to widen the measurable mass-to-charge ratio range, while ensuring a high mass resolution.
Abstract:
An image sensor (21) has a plurality of chips (31). Each chip (31) has a plurality of converter (33) for converting incident beams into electric signals and a plurality of electric signal storages (35). The converters (33) are arranged in one row or a plurality of rows in the vicinity of the first end portion (31a) of the chip (31). Each electric signal storage (35) extends from the converter (33) to the second end portion (31b) opposite to the first end portion (31a). The first end portion (31a) of each chip (31) is shifted relative to the first end portion (31a) of an adjacent chip (31) so that the row of the converters (33) of the respective chips (31) are stepwise exposed.
Abstract:
An image sensor and an image sensing method can obtain image signals with a high S/N ratio in a high-speed image pickup operation. Signal charges are input to input transfer stage 31 of CCD memory 30. Final transfer stage 32 is formed so as to be connected to the input transfer stage 31 and able to transfer signal charges to the input transfer stage 31. In an accumulation mode, read gate 42 and drain gate 40 are not turned on and the next transfer operation of the CCD memory 30 is conducted. The accumulated signal charges are transferred on a stage by stage basis and the signal charges obtained at the first image pickup timing are transferred again straightly to the input transfer stage 31. In this state, the signal charges obtained newly at photoelectric conversion section 20 at the next image pickup timing are injected into the input transfer stage 31 by way of input gate 21. As a result of this operation, the signal charges obtained at the last image pickup timing are added to the signal charges accumulated in the input transfer stage 31 so that integrated signal charges obtained by adding the two sets of signal charges are accumulated in the input transfer stage 31.