摘要:
An object of the present invention is to provide a semiconductor device which enables to reduce the device area, while securing the breakdown voltage between the drain and the source of each MOS transistor for the semiconductor device including plural MOS transistors, which are arrayed adjacently each other, with different types of channel conductivity. The semiconductor device includes a semiconductor substrate, a buried oxide film and a semiconductor layer, and furthermore the semiconductor layer has an island-like semiconductor layer, in which a MOS transistor is formed, the MOS transistor has a source region, and a drain region that is positioned in the periphery of the source region, an island-like semiconductor layer, in which a MOS transistor is formed, the MOS transistor has a drain region, and a source region that is positioned in the periphery of the drain region, an isolation trench which isolates the former island-like semiconductor layer from other portions of the semiconductor layer, an isolation trench which isolates the latter island-like semiconductor layer from other portions of the semiconductor layer, and a buffer region, in which the electric potential is fixed to the lowest electric potential in a circuit, which prevents an electrical interference occurred between transistors.
摘要:
In a high voltage P-channel MOS transistor formed on a silicon-on-insulator (SOI) substrate, a P+-type source region (8), an N-type body region (4) and an N+-body contact diffusion region (10) are surrounded by a P+-type drain region (9) and a P-type drift region (5). A gate electrode (7) is formed to overlap the end portion of the N-type body region (4). The end portion of the N-type body region (4) has a portion in which the gate electrode (7) and the P+-type source region (8) are not adjacent to each other.
摘要:
An object of the present invention is to provide a semiconductor device which enables to reduce the device area, while securing the breakdown voltage between the drain and the source of each MOS transistor for the semiconductor device including plural MOS transistors, which are arrayed adjacently each other, with different types of channel conductivity. The semiconductor device includes a semiconductor substrate, a buried oxide film and a semiconductor layer, and furthermore the semiconductor layer has an island-like semiconductor layer, in which a MOS transistor is formed, the MOS transistor has a source region, and a drain region that is positioned in the periphery of the source region, an island-like semiconductor layer, in which a MOS transistor is formed, the MOS transistor has a drain region, and a source region is that is positioned in the periphery of the drain region, an isolation trench which isolates the former island-like semiconductor layer from other portions of the semiconductor layer, an isolation trench which isolates the latter island-like semiconductor layer from other portions of the semiconductor layer, and a buffer region, in which the electric potential is fixed to the lowest electric potential in a circuit, which prevents an electrical interference occurred between transistors.
摘要:
A high breakdown voltage semiconductor device is formed using an SOI substrate comprising a support substrate, an insulating film, and an active layer. The high breakdown voltage semiconductor device comprises an N-type well region and a P-type drain offset region formed on the active layer, a P-type source region formed on the well region, a P-type drain region formed on the drain offset region, a gate insulating film formed in at least a region interposed between the source region and the drain offset region of the active layer, and a gate electrode formed on the gate insulating film. The device further comprises an N-type deep well region formed under the drain offset region. A concentration peak of N-type impurity for formation of the deep well region is located deeper than a concentration peak of P-type impurity for formation of the drain offset region.
摘要:
In a high voltage P-channel MOS transistor formed on a silicon-on-insulator (SOI) substrate, a P+-type source region (8), an N-type body region (4) and an N+-body contact diffusion region (10) are surrounded by a P+-type drain region (9) and a P-type drift region (5). A gate electrode (7) is formed to overlap the end portion of the N-type body region (4). The end portion of the N-type body region (4) has a portion in which the gate electrode (7) and the P+-type source region (8) are not adjacent to each other.
摘要:
A high breakdown voltage semiconductor device is formed using an SOI substrate comprising a support substrate, an insulating film, and an active layer. The high breakdown voltage semiconductor device comprises an N-type well region and a P-type drain offset region formed on the active layer, a P-type source region formed on the well region, a P-type drain region formed on the drain offset region, a gate insulating film formed in at least a region interposed between the source region and the drain offset region of the active layer, and a gate electrode formed on the gate insulating film. The device further comprises an N-type deep well region formed under the drain offset region. A concentration peak of N-type impurity for formation of the deep well region is located deeper than a concentration peak of P-type impurity for formation of the drain offset region.
摘要:
Provided is a semiconductor device which includes a conductive bonding pad formed on a semiconductor substrate of the first conduction type via an insulating film and a diffusion layer of the second conduction type formed on a surface of the semiconductor substrate under the bonding pad. Characteristics do not deteriorate even when a breakdown occurs during wire bonding.
摘要:
Provided is a semiconductor device which includes a conductive bonding pad formed on a semiconductor substrate of the first conduction type via an insulating film and a diffusion layer of the second conduction type formed on a surface of the semiconductor substrate under the bonding pad. Characteristics do not deteriorate even when a breakdown occurs during wire bonding.
摘要:
A gate electrode has an end extended over a part of a LOCOS oxide film, and a source electrode has an end extended further than the end of the gate electrode over a part of the LOCOS oxide film. An insulating film covering the gate electrode and the LOCOS oxide film is formed such that the thickness of the insulating film at an end-portion region, which is on an end portion of the gate electrode provided to extend over a part of the LOCOS oxide film, as viewed from a main surface of a supporting substrate, is smaller than the thickness of the insulating film below an end portion of the source electrode above the drain region and smaller than the thickness of the insulating film on an end portion of the gate electrode above a body region.
摘要:
A gate electrode has an end extended over a part of a LOCOS oxide film, and a source electrode has an end extended further than the end of the gate electrode over a part of the LOCOS oxide film. An insulating film covering the gate electrode and the LOCOS oxide film is formed such that the thickness of the insulating film at an end-portion region, which is on an end portion of the gate electrode provided to extend over a part of the LOCOS oxide film, as viewed from a main surface of a supporting substrate, is smaller than the thickness of the insulating film below an end portion of the source electrode above the drain region and smaller than the thickness of the insulating film on an end portion of the gate electrode above a body region.