摘要:
A method of producing a high-temperature oxide superconducting material, which comprises the steps of (a) preparing a material corresponding to an oxide superconductor of the perovskite type structure consisting essentially of a first member selected from the group consisting yttrium, lanthanoids, thallium and bismuth; at least one alkaline earth metal; copper; and oxygen and (b) heating the material in the presence of an alkali metal selected from the group consisting of potassium, sodium, rubidium and cesium to a temperature around the melting point of the alkali metal or to a higher temperature for a time sufficient to effect grain growth in the superconductor material, thereby to produce the superconductor containing the alkali metal in an amount not larger than 4 mole % based on the first member.
摘要:
An oxide superconductor comprising a perovskite type oxide compound of thallium, strontium, calcium and copper or thallium, strontium, balium, calcium and copper is produced by absorbing thallium in a gaseous phase into a mixture of strontium oxide or strontium oxide and barium oxide, calcium oxide, and copper oxide or a mixture of compounds capable of producing these oxides upon firing. From this superconductor are provided a superconductor wire material, tape-shaped wire material, coil, thin film, magnet, magnetic shielding material, printed circuit board, measuring device, computer, power storing device and etc.
摘要:
Superconductors using oxide superconducting materials having pinning centers inside crystal grains are enhanced in transmissible critical current density and allowed to have a high critical current density even in the magnetic field. A superconductor is produced comprising superconducting materials having a high irreversible magnetic field where the c axes of their crystals are oriented in one direction. This can be practically realized by heat-treating a superconducting material having the composition (Tl.sub.1-X1-X2 Pb.sub.X1 Bi.sub.X2)(Sr.sub.1-X3 Ba.sub.X3).sub.2 Ca.sub.2 Cu.sub.3 O.sub.9+X4 together with Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8 having a tendency of growing in the form of plate crystal. Various apparatuses capable of working under cooling with liquid nitrogen let alone with liquid helium and having a high superconducting critical current density even in a high magnetic field can be produced.
摘要:
This invention provides an oxide superconductor having a composition of the following general formula of (Tl.sub.a Bi.sub.b Pb.sub.c).sub.x (Sr.sub.d Ba.sub.e).sub.2y (Ca.sub.f Ln.sub.g).sub.y(n-1) Cu.sub.wn O.sub.2n+3+.delta., wherein Ln is at least one selected from Y and rare earth elements, n is 2, 3 or 4, -1
摘要翻译:本发明提供具有以下通式(TlaBibPbc)x(SrdBae)2y(CafLng)y(n-1)CuwnO2n + 3 +(delta)的组成的氧化物超导体,其中Ln是选自Y和 稀土元素,n为2,3或4,-1 <(δ)1,0.8 <= x <= 1.2,0.8 <= y <= 1.2,0.8 <= z <= 1.2和0.8 <= w < 1.2,如果a,b和c都不为零,即大于零,a + b + c = 1,d + e = 1和f + g = 1,0
摘要:
A superconducting oxide wire and a method of manufacturing the same are disclosed. The wire comprises a pipe made of a metal and a superconducting oxide material filling the interior of the pipe and comprising superconducting oxide grains which are bonded to each other and which have a perovskite crystal structure having a C face and a C axis. The superconducting oxide grains contain more than 50 vol % of plate-shaped grains of which the length in the direction of the C face is greater than the length in the direction of the C axis. The C faces of most the plate-shaped grains are arranged to be directed toward longitudinal axis of the pipe.
摘要:
A superconducting oxide wire and a method of manufacturing the same are disclosed. The wire comprises a pipe made of a metal and a superconducting oxide material filling the interior of the pipe and comprising superconducting oxide grains which are bonded to each other and which have a perovskite crystal structure having a C face and a C axis. The superconducting oxide grains contain more than 50 vol % of plate-shaped grains of which the length in the direction of the C face is greater than the length in the direction of the C axis. The C faces of most the plate-shaped grains are arranged to be directed toward longitudinal axis of the pipe.