Abstract:
A thermoelectric conversion material, a method for producing the same, and a thermoelectric conversion device are provided. The thermoelectric conversion material includes an oxide represented by formula (1): M1Oy (1), where M1 is at least one selected from the group consisting of V, Nb and Ta, and 1.90≦y≦2.10 or an oxide represented by formula (2): M11−xM2xOy (2), where M1 and y are as in formula (1), M2 is selected from the group consisting of Ti, Cr, Mn, Fe, Co, Zr, Hf, Mo and W, and 0≦x≦0.5.
Abstract:
A thermoelectric conversion material contains a metal oxide comprising M1, M2 and oxygen, wherein M1 is at least one selected from the group consisting of Ca, Sr and Ba and may contain an element selected from the group consisting of Li, Na, K, Mg, La, Ce, Nd, Sm, Bi and Pb, and wherein M2 comprises Cu as an essential element and may contain an element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co and Ni. The mole ratio of M2 to M (M2/M1) is 1.2 to 2.2.
Abstract:
A thermoelectric conversion material having an excellent thermoelectric conversion property and excellent in mechanical strength, a method for producing the same, and a thermoelectric conversion device using the same are provided. A thermoelectric conversion material includes an oxide for thermoelectric conversion material and an inorganic substance wherein the inorganic substance does not react with the oxide for thermoelectric conversion material under conditions of pressure: 950 hPa to 1050 hPa and temperature: 900° C. A method for producing a thermoelectric conversion material includes the steps (a1) and (a2): (a1) forming a mixture of an oxide for thermoelectric conversion material and an inorganic substance to obtain a green body, (a2) sintering the green body in air at 800° C. to 1700° C.
Abstract:
A thermoelectric conversion material is provided with stable thermoelectric conversion properties such as power factor in air at high temperature. The thermoelectric conversion material contains a mixed metal oxide comprising M1, M2A and M2B as metal elements at a molar ratio of M1:M2A:M2B of 2:1:1 and has a perovskite crystal structure, wherein M1 represents at least one M1A selected from the group consisting of La, Y and lanthanoid elements, or a combination of M1A and at least one M1B selected from among alkaline earth metal elements, M2A represents at least one selected from the group consisting of metal elements each of which can have an atomic valence of 2, M2B represents at least one selected from the group consisting of metal elements each of which can have an atomic valence of 4, M1, M2A and M2B are different from one another, and each of M2A and M2B may contain a doping element.
Abstract:
The present invention provides a thermoelectric material useful for a thermoelectric converter having excellent energy conversion efficiency, and a method for producing the thermoelectric material. The thermoelectric material comprising an oxide containing Ti, M, and O and the oxide is represented by Formula (1). Ti1-xMxOy (1) M represents at least one selected from the group consisting of V, Nb, and Ta, x is not less than 0.05 and not more than 0.5, and y is not less than 1.90 and not more than 2.02.
Abstract:
A thermoelectric conversion material contains a metal oxide comprising M1, M2 and oxygen, wherein M1 is at least one selected from the group consisting of Ca, Sr and Ba and may contain an element selected from the group consisting of Li, Na, K, Mg, La, Ce, Nd, Sm, Bi and Pb, and wherein M2 comprises Cu as an essential element and may contain an element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co and Ni. The mole ratio of M2 to M1 (M2/M1) is 1.2 to 2.2.
Abstract:
The present invention provides a thermoelectric material useful for a thermoelectric converter having excellent energy conversion efficiency, and a method for producing the thermoelectric material. The thermoelectric material comprising an oxide containing Ti, M, and O and the oxide is represented by Formula (1). Ti1-xMxOy (1) M represents at least one selected from the group consisting of V, Nb, and Ta, x is not less than 0.05 and not more than 0.5, and y is not less than 1.90 and not more than 2.02.
Abstract:
The present invention provides a thermoelectric conversion material and a process for producing the thermoelectric conversion materials. The thermoelectric conversion material I comprises a titanium oxide represented by the formula (A) TiOx (A), wherein 1.89=x
Abstract translation:本发明提供一种热电转换材料及其制造方法。 热电转换材料I包含由式(A)TiO x(A)表示的氧化钛,其中1.89 = x <1.94或1.94
Abstract:
The production method of the present invention is a method for producing porous aluminum magnesium titanate by forming a mixture containing Al source powder, Mg source powder, Ti source powder and Si source powder as well as a pore-forming agent to obtain a molded body; presintering the obtained molded body; and then sintering the presintered molded body, wherein the content of the pore-forming agent to a total of 100 parts by mass for the Al source powder, Mg source powder, Ti source powder and Si source powder is 5 to 30 parts by mass, the melting point of the Si source powder is 600 to 1300° C., when the elemental composition ratio of Al, Mg, Ti and Si in the mixture is represented by compositional formula (1): Al2(1−x)MgxTi(1+x)O5+aAl2O3+bSiO2 (1), x satisfies 0.05≦x≦0.15, a satisfies 0≦a≦0.1 and b satisfies 0.05≦b≦0.15, and the presintered molded body is sintered at 1300 to 1560° C.
Abstract:
The present invention is a process for producing an aluminum titanate-based ceramics comprising a step of firing a starting material mixture containing a titanium source powder, an aluminum source powder, and a copper source.