Abstract:
A method for exposing a wafer using a plurality of charged particle beamlets. The method comprises identifying non-functional beamlets among the beamlets, allocating a first subset of the beamlets for exposing a first portion of the wafer, the first subset excluding the identified non-functional beamlets, performing a first scan for exposing the first portion of the wafer using the first subset of the beamlets, allocating a second subset of the beamlets for exposing a second portion of the wafer, the second subset also excluding the identified non-functional beamlets, and performing a second scan for exposing the second portion of the wafer using the second subset of the beamlets, wherein the first and second portions of the wafer do not overlap and together comprise the complete area of the wafer to be exposed.
Abstract:
The invention relates to a maskless lithography system for patterning a target using a plurality of charged particle beamlets. The system comprises an electron optical column including a blanker array for modulating the beamlets. The blanker array includes receivers for receiving data signals and blanker elements for modulating the beamlets in accordance with the data signals. The system further comprises a data path comprising a preprocessing system for processing pattern data and a plurality of transmission channels for transmitting processed pattern data to the blanker elements. The data path further comprises a pattern streaming system for receiving pattern data and generating data signals. First and second channel selectors connect a subset of selected transmission channels for pattern data transmission. The first channel selector is connected between the preprocessing system and the transmission channels. The second channel selector is connected between the channels and the blanker elements.
Abstract:
A maskless charged particle lithography system comprises an electron-optical column and a data path. The column includes a blanker array including blanker elements. The data path comprises a preprocessing system, transmission channels, and a pattern streaming system. The lithography system is configured for exposing a target field in two passes by allocating a first beamlet subset for exposing a first field subset during a first pass and a second beamlet subset for exposing a second field subset during a second pass. A first beam selector selects a first pattern data subset containing exposure data for the first beamlet subset and a second pattern data subset containing exposure data for the second beamlet subset. Second beam selectors connect transmission channels assigned for transmitting the first pattern data subset to a first blanker elements subset, and transmission channels assigned for transmitting the second pattern data subset to a second blanker elements subset.
Abstract:
The invention relates to a charged-particle multi-beamlet lithography system. The system comprises a beam generator for generating a plurality of beamlets, a beamlet blanker array for patterning the plurality of beamlets, an optical fiber arrangement, and a projection system. The beamlet blanker array comprises a substrate provided with a first area comprising one or more modulators and a second area free of modulators. The beamlet blanker array comprises one or more light sensitive elements, electrically connected to the one or more modulators, and arranged to receive light beams carrying pattern data. The optical fiber arrangement comprises a plurality of optical fibers for guiding the light beams carrying pattern data towards the one or more light sensitive elements. The projection of the optical fiber arrangement onto a surface of the beamlet blanker array in a direction perpendicular to the surface falls entirely within the second area.
Abstract:
A maskless charged particle lithography system comprises an electron-optical column and a data path. The column includes a blanker array including blanker elements. The data path comprises a preprocessing system, transmission channels, and a pattern streaming system. The lithography system is configured for exposing a target field in two passes by allocating a first beamlet subset for exposing a first field subset during a first pass and a second beamlet subset for exposing a second field subset during a second pass. A first beam selector selects a first pattern data subset containing exposure data for the first beamlet subset and a second pattern data subset containing exposure data for the second beamlet subset. Second beam selectors connect transmission channels assigned for transmitting the first pattern data subset to a first blanker elements subset, and transmission channels assigned for transmitting the second pattern data subset to a second blanker elements subset.
Abstract:
The invention relates to a charged particle lithography system comprising a beam generator for generating a plurality of charged particle beamlets, a beam stop array and a modulation device. The beam stop array has a surface for blocking beamlets from reaching a target surface and an aperture array in the surface for allowing beamlets to reach the target surface. The modulation device is arranged for modulating the beamlets by deflecting or not deflecting the beamlets so that the beamlets are blocked or not blocked by the beam stop array. A surface area of the modulation device comprises an elongated beam area comprising an array of apertures and associated modulators, and a power interface area for accommodating a power arrangement for powering elements within the modulation device. The power interface area is located alongside a long side of the elongated beam area and extending in a direction substantially parallel thereto.
Abstract:
The invention relates to a maskless lithography system for patterning a target using a plurality of charged particle beamlets. The system comprises an electron optical column including a blanker array for modulating the beamlets. The blanker array includes receivers for receiving data signals and blanker elements for modulating the beamlets in accordance with the data signals. The system further comprises a data path comprising a preprocessing system for processing pattern data and a plurality of transmission channels for transmitting processed pattern data to the blanker elements. The data path further comprises a pattern streaming system for receiving pattern data and generating data signals. First and second channel selectors connect a subset of selected transmission channels for pattern data transmission. The first channel selector is connected between the preprocessing system and the transmission channels. The second channel selector is connected between the channels and the blanker elements.
Abstract:
The invention relates to a charged-particle multi-beamlet lithography system. The system comprises a beam generator for generating a plurality of beamlets, a beamlet blanker array for patterning the plurality of beamlets, an optical fiber arrangement, and a projection system. The beamlet blanker array comprises a substrate provided with a first area comprising one or more modulators and a second area free of modulators. The beamlet blanker array comprises one or more light sensitive elements, electrically connected to the one or more modulators, and arranged to receive light beams carrying pattern data. The optical fiber arrangement comprises a plurality of optical fibers for guiding the light beams carrying pattern data towards the one or more light sensitive elements. The projection of the optical fiber arrangement onto a surface of the beamlet blanker array in a direction perpendicular to the surface falls entirely within the second area.
Abstract:
The invention relates to a method of generating a two-level pattern for lithographic processing by multiple beamlets. In the method, first a pattern in vector format is provided. The vector format pattern is then converted into a pattern in pixmap format. Finally, a two-level pattern is formed by application of error diffusion on the pixmap format pattern.
Abstract:
A method and system for exposing a target according to pattern data in a maskless lithography machine generating a plurality of exposure beamlets for exposing the target. The method comprises providing input pattern data in a vector format, rendering and quantizing the input pattern data to generate intermediate pattern data, and re-sampling and re-quantizing the intermediate pattern data to generate output pattern data. The output pattern data is supplied to the lithography machine, and the beamlets generated by the lithography machine are modulated on the basis of the output pattern data.