摘要:
A thermoelectric device having a variable cross-section connecting structure includes a first electrode, a second electrode, and a connecting structure connecting the first electrode and the second electrode. The connecting structure has a first section and a second section. The width of the second section is greater than the width of the first section, and the width of the first section is less than a width that is approximately equivalent to a phonon mean free path through the first section.
摘要:
Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.
摘要:
A radiation-emitting device includes a nanowire that is structurally and electrically coupled to a first electrode and a second electrode. The nanowire includes a double-heterostructure semiconductor device configured to emit electromagnetic radiation when a voltage is applied between the electrodes. A device includes a nanowire having an active longitudinal segment selectively disposed at a predetermined location within a resonant cavity that is configured to resonate at least one wavelength of electromagnetic radiation emitted by the segment within a range extending from about 300 nanometers to about 2,000 nanometers. Active nanoparticles are precisely positioned in resonant cavities by growing segments of nanowires at known growth rates for selected amounts of time.
摘要:
Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.
摘要:
An optical apparatus includes a waveguide configured to propagate optical energy; an electrical contact surface; and a semiconductor electrical interconnect extending from a first surface of the optical waveguide to electrical communication with the electrical contact surface. The semiconductor electrical interconnect comprises a geometry configured to substantially confine the optical energy to the waveguide.
摘要:
An embodiment of an integrated circuit comprises active components in more than one active layer. A first conductor in one active layer is operative to produce a static electric field that controls a first active element in an adjacent active layer.
摘要:
Methods for forming a predetermined pattern of catalytic regions having nanoscale dimensions are provided for use in the growth of nanowires. The methods include one or more nanoimprinting steps to produce arrays of catalytic nanoislands or nanoscale regions of catalytic material circumscribed by noncatalytic material.
摘要:
A nanowire sensor is operable to detect one or more species. The nanowire sensor includes a nanowire having a plurality of variant selectively interactive segments. Each of the variant selectively interactive segments are configured to simultaneously interact with the species to modulate the conductance of the nanowire for detecting the species.
摘要:
A method for selectively controlling lengths of nanowires in a substantially non-uniform array of nanowires includes establishing at least two different catalyzing nanoparticles on a substrate. A nanowire from each of the at least two different catalyzing nanoparticles is substantially simultaneously grown. At least one of the nanowires has a length different from that of at least another of the nanowires.
摘要:
A method of forming an assembly of isolated nanowires of at least one material within a matrix of another material is provided. The method comprises: providing a substrate; forming a catalyst array on a major surface of the substrate; growing an array of the nanowires corresponding with the catalyst array, the nanowires, each comprising at least one material; and forming a matrix of another material that fills in spaces between the nanowires. The method is useful for producing a variety of structures useful in a number of devices, such as photonic bandgap structures and quantum dot structures.