Abstract:
Embodiments relate to printing features from an ink containing a material precursor. In some embodiments, the material includes an electrically active material, such as a semiconductor, a metal, or a combination thereof. In another embodiment, the material includes a dielectric. The embodiments provide improved printing process conditions that allow for more precise control of the shape, profile and dimensions of a printed line or other feature. The composition(s) and/or method(s) improve control of pinning by increasing the viscosity and mass loading of components in the ink. An exemplary method thus includes printing an ink comprising a material precursor and a solvent in a pattern on the substrate; precipitating the precursor in the pattern to form a pinning line; substantially evaporating the solvent to form a feature of the material precursor defined by the pinning line; and converting the material precursor to the patterned material.
Abstract:
Printable dopant formulations, methods of making such dopant formulations, and methods of using such dopant formulations are disclosed. The dopant formulations provide a printable dopant ink with a viscosity sufficient to prevent ink spreading when deposited in a pattern on a substrate. Furthermore, an ion exchange purification process provides the dopant formulation with a reduced metal ion concentration, and thus a relatively high purity level. Consequently, the dopant residue remaining on the substrate after curing and/or dopant activation process is relatively uniform, and therefore can be easily removed.
Abstract:
In one aspect, the present invention provides undoped and doped siloxanes, germoxanes, and silagermoxanes that are substantially free from carbon and other undesired contaminants. In a second aspect, the present invention provides methods for making such undoped and doped siloxanes, germoxanes, and silagermoxanes. In still another aspect, the present invention provides compositions comprising undoped and/or doped siloxanes, germoxanes, and silagermoxanes and a solvent, and methods for forming undoped and doped dielectric films from such compositions. Undoped and/or doped siloxane compositions as described advantageously provide undoped and/or doped dielectric precursor inks that may be employed in forming substantially carbon-free undoped and/or doped dielectric films.
Abstract:
In one aspect, the present invention provides undoped and doped siloxanes, germoxanes, and silagermoxanes that are substantially free from carbon and other undesired contaminants. In a second aspect, the present invention provides methods for making such undoped and doped siloxanes, germoxanes, and silagermoxanes. In still another aspect, the present invention provides compositions comprising undoped and/or doped siloxanes, germoxanes, and silagermoxanes and a solvent, and methods for forming undoped and doped dielectric films from such compositions. Undoped and/or doped siloxane compositions as described advantageously provide undoped and/or doped dielectric precursor inks that may be employed in forming substantially carbon-free undoped and/or doped dielectric films.
Abstract:
Doped semiconductor ink formulations, methods of making doped semiconductor ink formulations, methods of coating or printing thin films, methods of forming electronic devices and/or structures from the thin films, and methods for modifying and controlling the threshold voltage of a thin film transistor using the films are disclosed. A desired dopant may be added to an ink formulation comprising a Group IVA compound and a solvent, and then the ink may be printed on a substrate to form thin films and conductive structures/devices, such as thin film transistors. By adding a customized amount of the dopant to the ink prior to printing, the threshold voltage of a thin film transistor made from the doped semiconductor ink may be independently controlled upon activation of the dopant.