摘要:
A conductive wire includes a metallic wire substrate having a diameter and a surface, and a coating material having a plurality of carbon nanotubes dispersed therein. The coating material is operable to adhere a portion of the carbon nanotubes to the surface of the wire. The coating material has higher specific conductivity than the metallic wire substrate and also has a low contact resistance with the metallic wire substrate.
摘要:
A conductive wire includes a thermoplastic filament having a circumference and a plurality of coating layers dispersed about the circumference of the thermoplastic filament. The coating layers include a plurality of conductive layers comprising aligned carbon nanotubes dispersed therein and at least one thermoplastic layer between each pair of conductive layers.
摘要:
An oligomer having di-phenylethynyl endcaps is disclosed. The capped oligomer has the formula: D-A-D whereinD is a di-phenylethynyl endcap; andA is an oligomer selected from the group consisting of imidesulfone; ether; ethersulfone; amide; imide; ester; estersulfone; etherimide; amideimide; oxazole; oxazole sulfone; thiazole; thiazole sulfone; imidazole; and imidazole sulfone.
摘要:
A conductive wire includes a thermoplastic filament having a circumference and a plurality of coating layers dispersed about the circumference of the thermoplastic filament. The coating layers include a plurality of conductive layers comprising aligned carbon nanotubes dispersed therein and at least one thermoplastic layer between each pair of conductive layers.
摘要:
Disclosed herein are laminates that include a layer containing a metal-coated fabric. The laminate may also include a layer or layers of an organic polymeric matrix composite. In accordance with certain embodiments, the matrix composite includes a thermosetting or thermoplastic resin matrix with parallel-oriented reinforcing fibers embedded therein, interposed between the metal-coated fabric layers.
摘要:
The disclosure provides for a system and method for dense barrier coatings for oxidation protection. In an embodiment of the disclosure, there is provided a dense barrier-coating system for use with a dry polymer-matrix composite (PMC) substrate having a first coefficient of thermal expansion. The system comprises a flexible sublayer free of water, wherein a first surface of the flexible sublayer is bonded to a first surface of the PMC. The system further comprises an oxygen-impervious, dense barrier-coating layer, wherein a first surface of the oxygen-impervious, dense barrier-coating layer is bonded to a second surface of the flexible sublayer, and further wherein the oxygen-impervious, dense barrier-coating layer is selected from the group consisting of metallic materials and ceramic materials each having a respective second coefficient of thermal expansion. The flexibility of the flexible sublayer protects the respective bonds when the first and second coefficients of thermal expansion are unequal.
摘要:
A conductive wire includes a plurality of thermoplastic filaments each having a surface, and a coating material having a plurality of carbon nanotubes dispersed therein. The coating material is bonded to the surface of each thermoplastic filament. The thermoplastic filaments having the coating bonded thereto are bundled and bonded to each other to form a substantially cylindrical conductor.
摘要:
A conductive wire includes an aramid fiber and at least one layer attached about the aramid fiber, the at least one layer including at least one of aligned carbon nanotubes and graphene platelets.
摘要:
A conductive wire includes a plurality of thermoplastic filaments each having a surface, and a coating material having a plurality of carbon nanotubes dispersed therein. The coating material is bonded to the surface of each thermoplastic filament. The thermoplastic filaments having the coating bonded thereto are bundled and bonded to each other to form a substantially cylindrical conductor.
摘要:
Materials and Methods are provided for producing preform materials for impact-resistant composite materials suitable for liquid molding. An interlayer comprising a spunbonded, spunlaced, or mesh fabric is introduced between non-crimped layers of unidirectional reinforcing fibers to produce a preform for use in liquid-molding processes to produce composite materials. Interlayer material remains as a separate phase from matrix resin after infusion, and curing of the preform provides increased impact resistance by increasing the amount of energy required to propagate localized fractures due to impact. Constructions having the interlayer materials melt-bonded to the reinforcing fibers demonstrate improved mechanical performance through improved fiber alignment compared to other fabrication and preforming methods.