摘要:
A method for producing a device which is suitable for delivering a substance into or through the skin and includes an array of microneedles developed out of an Si semiconductor substrate, the microneedles being affixed on and/or inside a flexible support made from a polymer material. A device producible by this method.
摘要:
A method for manufacturing porous microstructures in a silicon semiconductor substrate, porous microstructures manufactured according to this method, and the use thereof.
摘要:
A method for manufacturing porous microstructures in a silicon semiconductor substrate, porous microstructures manufactured according to this method, and the use thereof.
摘要:
A method for manufacturing an at least partially porous, hollow silicon body, including the steps of vertical, anisotropic etching, porosifying, and electropolishing. Hollow silicon bodies manufactured using this method; the body wall including an inner layer, an intermediate layer, and an outer layer, and the porosity of the intermediate layer being greater than those of the inner and outer layers. The use of the hollow silicon bodies.
摘要:
A microelectromechanical sensor module includes a sensing mechanism for measuring an acceleration, pressure, air humidity or the like, a control mechanism for controlling the sensing mechanism, an energy supply mechanism for supplying the sensor module with energy, and a transmission mechanism for transmitting signals of the sensing mechanism. At least three of the mechanisms are integrated at the chip level in at least one chip in each case. A corresponding method is implemented to produce the microelectromechanical sensor module.
摘要:
A microelectromechanical sensor module includes a sensing mechanism for measuring an acceleration, pressure, air humidity or the like, a control mechanism for controlling the sensing mechanism, an energy supply mechanism for supplying the sensor module with energy, and a transmission mechanism for transmitting signals of the sensing mechanism. At least three of the mechanisms are integrated at the chip level in at least one chip in each case. A corresponding method is implemented to produce the microelectromechanical sensor module.
摘要:
A micromechanical device measures an acceleration, a pressure or the like. It comprises a substrate having at least one fixed electrode, a seismic mass moveably arranged on the substrate, at least one ground electrode, which is arranged on the seismic mass, and resetting means for returning the seismic mass into an initial position, wherein the fixed electrode and the ground electrode are configured in one measurement plane for measuring an acceleration, a pressure or the like in the measurement plane, and wherein the fixed electrode and the ground electrode are configured for measuring an acceleration, pressure or the like acting on the seismic mass perpendicular to the measurement plane. The disclosure likewise relates to a corresponding method and a corresponding use.
摘要:
A method for producing a micromechanical component is described. The method includes providing a substrate having a layer system including an insulating material situated on the substrate, a conductive layer section and a protective layer structure connected to the conductive layer section, which borders a section of the insulating material. The method furthermore includes carrying out an isotropic etching process for removing a part of the insulating material, the conductive layer section and the protective layer structure preventing the removal of the bordered section of the insulating material; and a structural element being developed, which includes the conductive layer section, the protective layer structure and the bordered section of the insulating material.
摘要:
A capping technology is provided in which, despite the fact that structures which are surrounded by a silicon-germanium filling layer are exposed using ClF3 etching through micropores in the silicon cap, an etching attack on the silicon cap is prevented, namely, either by particularly selective (approximately 10,000:1 or higher) adjustment of the etching process itself, or by using the finding that the oxide of a germanium-rich layer, in contrast to oxidized porous silicon, is not stable but instead may be easily dissolved, to protect the silicon cap.
摘要:
A capping technology is provided in which, despite the fact that structures which are surrounded by a silicon-germanium filling layer are exposed using ClF3 etching through micropores in the silicon cap, an etching attack on the silicon cap is prevented, namely, either by particularly selective (approximately 10,000:1 or higher) adjustment of the etching process itself, or by using the finding that the oxide of a germanium-rich layer, in contrast to oxidized porous silicon, is not stable but instead may be easily dissolved, to protect the silicon cap.