Abstract:
A method for patterning topography is provided. A substrate is provided with a plurality of lines. The method includes aligning and preparing a first directed self-assembly (DSA) pattern overlying the lines, transferring the first pattern to form first line cuts, aligning and preparing a second DSA pattern overlying the lines, and transferring the second pattern to form second line cuts. The DSA patterns include trenches and holes of diameter d, and each comprise a block copolymer having HCP morphology, a characteristic dimension Lo approximately equal to the line pitch, and a minority phase of the diameter d. The trenches are wet by a majority phase of the block copolymer and guide formation of the holes. The aligning and preparation of the DSA patterns include overlapping the two sets of trenches such that areas between holes of one pattern and adjacent holes of the other pattern are shared by adjacent trenches.
Abstract:
Embodiments described relate to a method and apparatus for reducing lithographic distortion. A backside of a semiconductor substrate may be texturized. Then a lithographic process may be performed on the semiconductor substrate having the texturized backside.
Abstract:
A method for patterning topography is provided. A substrate is provided with a plurality of lines. The method includes aligning and preparing a first directed self-assembly (DSA) pattern overlying the lines, transferring the first pattern to form first line cuts, aligning and preparing a second DSA pattern overlying the lines, and transferring the second pattern to form second line cuts. The DSA patterns include trenches and holes of diameter d, and each comprise a block copolymer having HCP morphology, a characteristic dimension Lo approximately equal to the line pitch, and a minority phase of the diameter d. The trenches are wet by a majority phase of the block copolymer and guide formation of the holes. The aligning and preparation of the DSA patterns include overlapping the two sets of trenches such that areas between holes of one pattern and adjacent holes of the other pattern are shared by adjacent trenches.
Abstract:
Embodiments described relate to a method and apparatus for reducing lithographic distortion. A backside of a semiconductor substrate may be texturized. Then a lithographic process may be performed on the semiconductor substrate having the texturized backside.
Abstract:
A method of forming a patterned substrate includes casting a layer of a block copolymer having an intrinsic glass transition temperature Tg, on a substrate to form a layered substrate. The method also includes heating the layered substrate at an annealing temperature, which is greater than about 50° C. above the intrinsic glass transition temperature Tg of the block copolymer, in a first atmosphere. The method further includes thermally quenching the layered substrate to a quenching temperature lower than the intrinsic glass transition temperature Tg, at a rate of greater than about 50° C./minute in a second atmosphere. The method further includes controlling an oxygen content in the first and second atmospheres to a level equal to or less than about 8 ppm to maintain the annealing and quenching temperatures below a thermal degradation temperature Td of the block copolymer.
Abstract:
A method for partially filling an open feature on a substrate includes receiving a substrate having a layer with at least one open feature formed therein, wherein the open feature penetrates into the layer from an upper surface and includes sidewalls extending to a bottom of the open feature. The open feature is overfilled with an organic coating that covers the upper surface of the layer and extends to the bottom of the open feature. The method further includes removing a portion of the organic coating to expose the upper surface of the layer and recessing the organic coating to a pre-determined depth from the upper surface to create an organic coating plug of pre-determined thickness at the bottom of the open feature, and converting the chemical composition of the organic coating plug to create an inorganic plug.
Abstract:
Described herein are technologies to facilitate device fabrication, especially those that involve spin-on coatings of a substrate (e.g., wafer). More particularly, technologies described herein facilitate the planarization (i.e., flatness) of spin-on coatings during the device fabrication to form a uniformly planar film or layer on the substrate. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
Abstract:
Systems and methods for SOC planarization are described. In an embodiment, an apparatus for SOC planarization includes a substrate holder configured to support a microelectronic substrate. Additionally, the apparatus may include a light source configured to emit ultraviolet (UV) light toward a surface of the microelectronic substrate. In an embodiment, the apparatus may also include an isolation window disposed between the light source and the microelectronic substrate. Also, the apparatus may include a gas distribution unit configured to inject gas in a region between the isolation window and the microelectronic substrate. Furthermore, the apparatus may include an etchback leveling component configured to reduce non-uniformity of a UV light treatment of the microelectronic substrate.
Abstract:
A method is provided for forming a patterned topography on a substrate. The substrate is provided with features formed atop that constitute an existing topography, and a template for directed self-assembly (DSA) surrounds the exposed topography. Further to the method, the template is filled with a block copolymer (BCP) to cover the exposed topography, and then the BCP is annealed within the template to drive self-assembly in alignment with the topography. Developing the annealed BCP exposes a DSA pattern immediately overlying the topography.
Abstract:
The disclosure herein describes methods for Photosensitized Chemically Amplified Resist Chemicals (PS-CAR) to pattern light sensitive films on a semiconductor substrate. In one embodiment, a two-step exposure process may generate higher acid concentration regions within a photoresist layer. The PS-CAR chemicals may include photoacid generators (PAGs) and photosensitizer elements that enhance the decomposition of the PAGs into acid. The first exposure may be a patterned EUV exposure that generates an initial amount of acid and photosensitizer. The second exposure may be a non-EUV flood exposure that excites the photosensitizer which increases the acid generation rate where the photosensitizer is located on the substrate. The distribution of energy during the exposures may be optimized by using certain characteristics (e.g., thickness, index of refraction, doping) of the photoresist layer, an underlying layer, and/or an overlying layer.