Abstract:
Disclosed is a liquid processing apparatus capable of accurately determining a holding state of a substrate without being influenced by, for example, material or surface condition of a substrate. The liquid processing apparatus includes a substrate holding unit that holds a substrate, a camera that photographs a region where a peripheral edge portion of substrate is present when substrate is properly held by the substrate holding unit, and a control unit that determines a holding state of the substrate held by the substrate holding unit based on an image photographed by the camera.
Abstract:
Disclosed is a processing apparatus that includes a chamber accommodating a workpiece, a nozzle provided within the chamber, a measuring unit measuring the supply flow rate of the processing fluid supplied to the nozzle, an opening/closing unit performing opening/closing of the flow path of the processing fluid, and a controller. The controller sends an opening/closing operation signal that causes the opening/closing unit to perform an opening/closing operation according to recipe information that indicates processing contents. After sending the opening/closing operation signal to the opening/closing unit according to the recipe information, the controller starts the integration of the supply flow rate based on the measurement result of the measuring unit, monitors the rise of the supply flow rate based on the calculated integrated amount, and when supplying a specific flow rate, monitors the supply flow rate based on a value actually measured by the measuring unit.
Abstract:
A processing apparatus includes a chamber configured to accommodate a substrate to be processed, a nozzle provided in the chamber and configured to supply a processing solution to the substrate, a flow rate measuring part configured to measure a flow rate of the processing solution supplied to the nozzle, a flow path opening/closing part configured to open and close a supply flow path of the processing solution to the nozzle, and a controller configured to output a close signal causing the flow path opening/closing part to perform a closing operation that closes the supply flow path. The controller is configured to detect an operation abnormality of the flow path opening/closing part based on an accumulated amount of the flow rate measured by the flow rate measuring part after outputting the close signal.
Abstract:
A substrate processing apparatus includes: a mixer configured to mix sulfuric acid as a first component and a second component different from the first component to prepare an etchant; a nozzle configured to eject the etchant to a substrate; a first component supplier including a first flow path that supplies the first component to the mixer, a first instantaneous flowmeter and a first flow rate controller provided in the first flow path; a second component supplier including a second flow path different from the first flow path and configured to supply the second component to the mixer, a second instantaneous flowmeter and a second flow rate controller provided in the second flow path; and a controller configured to control the first and second flow rate controllers using average flow rates of the first component and the second component during the ejection of the etchant to the substrate.
Abstract:
A substrate processing apparatus includes: a mixer configured to mix sulfuric acid as a first component and a second component different from the first component to prepare an etchant; a nozzle configured to eject the etchant to a substrate; a first component supplier including a first flow path that supplies the first component to the mixer, a first instantaneous flowmeter and a first flow rate controller provided in the first flow path; a second component supplier including a second flow path different from the first flow path and configured to supply the second component to the mixer, a second instantaneous flowmeter and a second flow rate controller provided in the second flow path; and a controller configured to control the first and second flow rate controllers using average flow rates of the first component and the second component during the ejection of the etchant to the substrate.
Abstract:
Disclosed is a processing apparatus including a chamber, at least one nozzle, a measuring unit, an opening/closing unit, and a controller. The chamber accommodates a workpiece therein. The nozzle is provided in the chamber to supply a processing fluid toward the workpiece. The measuring unit measures a supply flow rate of the processing fluid supplied to the nozzle. The opening/closing unit performs opening/closing of a flow path of the processing fluid to be supplied to the nozzle. The controller outputs opening and closing operation signals at a preset timing. After outputting the opening operation signal, the controller calculates an integrated amount of the processing fluid based on a measurement result of the measuring unit, and performs an output timing change processing to change a timing of outputting the opening or closing operation signal from the preset timing based on the calculated integrated amount.
Abstract:
Disclosed is a processing apparatus including a chamber, at least one nozzle, a measuring unit, an opening/closing unit, and a controller. The chamber accommodates a workpiece therein. The nozzle is provided in the chamber to supply a processing fluid toward the workpiece. The measuring unit measures a supply flow rate of the processing fluid supplied to the nozzle. The opening/closing unit performs opening/closing of a flow path of the processing fluid to be supplied to the nozzle. The controller outputs opening and closing operation signals at a preset timing. After outputting the opening operation signal, the controller calculates an integrated amount of the processing fluid based on a measurement result of the measuring unit, and performs an output timing change processing to change a timing of outputting the opening or closing operation signal from the preset timing based on the calculated integrated amount.
Abstract:
Disclosed is a processing apparatus that includes a chamber accommodating a workpiece, a nozzle provided within the chamber, a measuring unit measuring the supply flow rate of the processing fluid supplied to the nozzle, an opening/closing unit performing opening/closing of the flow path of the processing fluid, and a controller. The controller sends an opening/closing operation signal that causes the opening/closing unit to perform an opening/closing operation according to recipe information that indicates processing contents. After sending the opening/closing operation signal to the opening/closing unit according to the recipe information, the controller starts the integration of the supply flow rate based on the measurement result of the measuring unit, monitors the rise of the supply flow rate based on the calculated integrated amount, and when supplying a specific flow rate, monitors the supply flow rate based on a value actually measured by the measuring unit.
Abstract:
Disclosed is a liquid processing apparatus capable of accurately determining a holding state of a substrate without being influenced by, for example, material or surface condition of a substrate. The liquid processing apparatus includes a substrate holding unit that holds a substrate, a camera that photographs a region where a peripheral edge portion of substrate is present when substrate is properly held by the substrate holding unit, and a control unit that determines a holding state of the substrate held by the substrate holding unit based on an image photographed by the camera.