Abstract:
There is provided a method of etching a silicon-containing film formed on a substrate, the method including: etching the silicon-containing film by using both a first fluorine-containing gas and a second fluorine-containing gas, the first fluorine-containing gas including at least an F2 gas and the second fluorine-containing gas including at least a ClF3 gas, an IF7 gas, an IF5 gas or an SF6 gas.
Abstract:
A substrate cleaning system has a first processing apparatus including a first holding device for holding a substrate, and a treatment solution supply device for supplying onto the entire portion of the front surface of the substrate a treatment solution which includes a volatile component and solidifies or is cured to form a treatment film, and a second processing apparatus including a second holding device for holding the substrate, and a removal-solution supply device for supplying onto the substrate a removal solution which removes the treatment film formed on the front surface of the substrate after the treatment solution supplied by the treatment solution supply device solidifies or is cured.
Abstract:
A supercritical drying method for a semiconductor substrate is disclosed. The method may include introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method may also include performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
Abstract:
A method for cleaning a substrate includes setting a substrate inside a cleaning chamber, supplying on a surface of the substrate a treatment solution which includes a volatile component and forms a treatment film, vaporizing the volatile component of the treatment solution supplied on the surface of the substrate such that the treatment solution solidifies or is cured on the surface of the substrate and the treatment film is formed on the surface of the substrate, and supplying onto the treatment film formed on the surface of the substrate a removal solution which removes the treatment film.
Abstract:
A method for cleaning a substrate, includes supplying to a substrate having a hydrophilic surface a film-forming processing liquid which includes a volatile component and forms a film on the substrate, vaporizing the volatile component in the film-forming processing liquid such that the film-forming processing liquid solidifies or cures on the substrate and forms a processing film on the hydrophilic surface of the substrate, and supplying to the substrate having the processing film a strip-processing liquid for stripping the processing film from the substrate.
Abstract:
Productivity can be improved. A substrate processing method includes a processing liquid supplying process of supplying a processing liquid, which contains a volatile component and forms a film on a substrate, onto the substrate on which a pre-treatment, which requires atmosphere management or time management after the pre-treatment, is performed; and an accommodating process of accommodating, in a transfer container, the substrate on which the processing liquid is solidified or cured by volatilization of the volatile component.
Abstract:
A substrate cleaning system has a first processing apparatus including a first holding device for holding a substrate, and a treatment solution supply device for supplying onto the entire portion of the front surface of the substrate a treatment solution which includes a volatile component and solidifies or is cured to form a treatment film, and a second processing apparatus including a second holding device for holding the substrate, and a removal-solution supply device for supplying onto the substrate a removal solution which removes the treatment film formed on the front surface of the substrate after the treatment solution supplied by the treatment solution supply device solidifies or is cured.
Abstract:
In an etching method for removing a processing target layer formed on a substrate for manufacturing electronic devices, a first break-through process of removing an oxide film formed on a surface of the processing target layer is performed, and a first main etching process of etching the processing target layer is performed after the first break-through process. Then, a second break-through process of removing the oxide film exposed after the first main etching process is performed, and a second main etching process of etching the processing target layer is performed after the second break-through process.
Abstract:
Disclosed is a substrate liquid processing apparatus. The substrate liquid processing apparatus includes a processing unit, a nozzle, a silylation liquid supply mechanism, and a blocking fluid supply mechanism. The processing unit performs a water repellency imparting processing on a substrate by supplying a silylation liquid to the substrate. The nozzle includes an ejection port configured to supply the silylation liquid to the substrate positioned in the processing unit, and a silylation liquid flow path in which the silylation liquid flows toward the ejection port. The silylation liquid supply mechanism supplies the silylation liquid to the silylation liquid flow path in the nozzle through a silylation liquid supply line. The blocking fluid supply mechanism supplies a blocking fluid that blocks the silylation liquid within the silylation liquid flow path in the nozzle from an atmosphere outside the ejection port.
Abstract:
Disclosed is a separation and regeneration apparatus including: a supercritical processing unit configured to generate a mixed gas including a first fluorine-containing organic solvent having a first boiling point and a second fluorine-containing organic solvent having a second boiling point lower than the first boiling point; and a distillation tank configured to store hot water having a temperature between the first boiling point and the second boiling point, in which the mixed gas is input into the hot water to be separated into the first fluorine-containing organic solvent in a liquid state and the second fluorine-containing organic solvent in a gas state, in which an introduction line configured to guide the mixed gas from the supercritical processing unit to the distillation tank is provided and a distal end of the introduction line is disposed in the hot water.