Abstract:
A substrate treatment method of treating a substrate using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer, includes: a resist pattern formation step of forming a predetermined resist pattern by a resist film on the substrate; a thin film formation step of forming a thin film for suppressing deformation of the resist pattern on a surface of the resist pattern; a block copolymer coating step of applying a block copolymer to the substrate after the formation of the thin film; and a polymer separation step of phase-separating the block copolymer into the hydrophilic polymer and the hydrophobic polymer.
Abstract:
In the present disclosure, the high-pressure chamber includes a chamber main body including a flat rectangular parallelepiped block of a metal which is formed with a flat cavity that serves as a substrate processing space in which a processing using a high-pressure fluid is performed on a substrate, and the substrate processing space being formed by machining the block from one of faces of the block other than the widest face towards another face opposing thereto. In a case where the cavity is constituted as a through hole, the though hole is provided with a cover configured to open or close the cavity on one side of the through hole, and a second block configured to air-tightly seal the cavity on the other side.
Abstract:
In the present disclosure, the high-pressure chamber includes a chamber main body including a flat rectangular parallelepiped block of a metal which is formed with a flat cavity that serves as a substrate processing space in which a processing using a high-pressure fluid is performed on a substrate, and the substrate processing space being formed by machining the block from one of faces of the block other than the widest face towards another face opposing thereto. In a case where the cavity is constituted as a through hole, the though hole is provided with a cover configured to open or close the cavity on one side of the through hole, and a second block configured to air-tightly seal the cavity on the other side.
Abstract:
This method for processing a target object includes steps ST1 to ST4. The target object has an organic polymer layer and a resist mask on a substrate. In step ST1, the target object is electrostatically attached to an electrostatic chuck in a plasma processing apparatus. In step ST2, the organic polymer layer is etched through the resist mask by means of a plasma of a first gas. In step ST3, the target object is detached from the electrostatic chuck while a plasma of a second gas is generated. In step 4, the resist mask is peeled off. The second gas is either oxygen gas or a mixture of oxygen gas and a rare gas having an atomic weight lower than that of argon gas.
Abstract:
A supercritical drying method for a semiconductor substrate is disclosed. The method may include introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method may also include performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
Abstract:
An etching method includes preparing a substrate in which titanium nitride and molybdenum or tungsten are present, and etching the titanium nitride by supplying a processing gas including a ClF3 gas and a N2 gas to the substrate, wherein in the etching the titanium nitride, a partial pressure ratio of the ClF3 gas to the N2 gas in the processing gas is set to a value at which grain boundaries of the molybdenum or the tungsten are nitrided to such an extent that generation of a pitting is suppressed.
Abstract:
A substrate treatment method includes: forming a plurality of circular patterns of a resist film on a substrate; thereafter applying a first block copolymer; then phase-separating the first block copolymer into a hydrophilic polymer and a hydrophobic polymer; thereafter selectively removing the hydrophilic polymer; then selectively removing the resist film from a top of the substrate; thereafter applying a second block copolymer to the substrate; then phase-separating the second block copolymer into a hydrophilic polymer and a hydrophobic polymer; and thereafter selectively removing the hydrophilic polymer from the phase-separated second block copolymer. A ratio of a molecular weight of the hydrophilic polymer in the first block copolymer and the second block copolymer is 20% to 40%.
Abstract:
An etching method includes: providing, within a chamber, a substrate that includes at least a silicon-containing material and a molybdenum film or a tungsten film which is in an exposed state, and selectively etching the molybdenum film or the tungsten film relative to the silicon-containing material by supplying, into the chamber, an oxidation gas and a hexafluoride gas as an etching gas.
Abstract:
An etching method includes: providing, in a chamber, a substrate including a structure including a first film selected from a molybdenum film and a tungsten film; performing a first etching on the first film by supplying an oxidation gas and a first gas selected from a MoF6 gas and a WF6 gas into the chamber; when a pore present inside the first film is exposed by the first etching, filling the pore with one of molybdenum and tungsten by stopping the first etching and supplying a reduction gas and a second gas selected the MoF6 gas and the WF6 gas into the chamber; and performing a second etching on a filling layer formed in the filling and the first film by supplying the oxidation gas and a third gas selected from the MoF6 gas and the WF6 gas into the chamber.
Abstract:
The present disclosure provides a substrate processing apparatus including: a processing chamber configured to process a substrate; a fluid supply source configured to supply a substrate processing fluid used in processing for the substrate in a predetermined pressure; a constant pressure supplying path configured to supply the substrate processing fluid from the fluid supply source to the processing chamber in a predetermined pressure without boosting the pressure of the substrate processing liquid; a boosted pressure supplying path configured to boost the pressure of the substrate processing fluid from the fluid supply source into a predetermined pressure by a booster mechanism and supply the pressure boosted substrate processing fluid to the processing chamber; and a control unit configured to switch over the constant pressure supplying path and the boosted pressure supplying path.