Abstract:
The present disclosure provides a substrate processing apparatus including: a substrate processing chamber configured to process a substrate on which a target layer to be removed is formed on the surface of an underlying layer; a substrate holding unit provided in the substrate processing chamber and configured to hold the substrate; a mixed liquid supplying unit configured to supply a mixed liquid of sulfuric acid and hydrogen peroxide to the substrate held by the substrate holding unit in a mixing ratio of the hydrogen peroxide and a temperature that does not damage the underlying layer while removing the target layer; and an OH-group supplying unit configured to supply a fluid containing OH-group to the substrate in an amount that does not damage the underlying layer when the mixed liquid and the OH-group are mixed on the substrate.
Abstract:
A liquid processing method is provided for performing a liquid process on a front surface of a substrate by using a processing solution and then performing a rinse process on the front surface of the substrate by using a rinse solution having a temperature lower than a temperature of the processing solution. The method includes performing an intermediate process between the liquid process and the rinse process, for adjusting a temperature of the front surface of the substrate to a temperature higher than the temperature of the rinse solution and lower than the temperature of the processing solution. In the intermediate process, an intermediate processing solution having a temperature higher than the temperature of the rinse solution and lower than the temperature of the processing solution is supplied only to a rear surface of the substrate.
Abstract:
The present disclosure provides a substrate processing apparatus including: a substrate processing chamber configured to process a substrate on which a target layer to be removed is formed on the surface of an underlying layer; a substrate holding unit provided in the substrate processing chamber and configured to hold the substrate; a mixed liquid supplying unit configured to supply a mixed liquid of sulfuric acid and hydrogen peroxide to the substrate held by the substrate holding unit in a mixing ratio of the hydrogen peroxide and a temperature that does not damage the underlying layer while removing the target layer; and an OH-group supplying unit configured to supply a fluid containing OH-group to the substrate in an amount that does not damage the underlying layer when the mixed liquid and the OH-group are mixed on the substrate.
Abstract:
The present disclosure provides a substrate processing method and a substrate processing apparatus. The substrate processing method includes: generating an SPM liquid of a first temperature that contains Caro's acid having a separation effect of a resist film formed on the surface of a substrate by mixing heated sulfuric acid with hydrogen peroxide; cooling the SPM liquid to a second temperature at which a reduction effect of film loss occurs; and applying the SPM liquid of the second temperature to the resist film thereby separating the resist film.
Abstract:
A liquid processing method is provided for performing a liquid process on a front surface of a substrate by using a processing solution and then performing a rinse process on the front surface of the substrate by using a rinse solution having a temperature lower than a temperature of the processing solution. The method includes performing an intermediate process between the liquid process and the rinse process, for adjusting a temperature of the front surface of the substrate to a temperature higher than the temperature of the rinse solution and lower than the temperature of the processing solution. In the intermediate process, an intermediate processing solution having a temperature higher than the temperature of the rinse solution and lower than the temperature of the processing solution is supplied only to a rear surface of the substrate.
Abstract:
Disclosed is a substrate liquid processing apparatus. The substrate liquid processing apparatus includes a processing unit, a nozzle, a silylation liquid supply mechanism, and a blocking fluid supply mechanism. The processing unit performs a water repellency imparting processing on a substrate by supplying a silylation liquid to the substrate. The nozzle includes an ejection port configured to supply the silylation liquid to the substrate positioned in the processing unit, and a silylation liquid flow path in which the silylation liquid flows toward the ejection port. The silylation liquid supply mechanism supplies the silylation liquid to the silylation liquid flow path in the nozzle through a silylation liquid supply line. The blocking fluid supply mechanism supplies a blocking fluid that blocks the silylation liquid within the silylation liquid flow path in the nozzle from an atmosphere outside the ejection port.
Abstract:
Disclosed is a liquid processing method which may de-electrify the surface of a hydrophobized substrate. A substrate electrified according to a liquid processing is de-electrified by supplying a hydrophobizing liquid to a surface of the substrate subjected to the liquid processing while rotating the substrate, and performing rinsing by supplying an alkaline rinsing liquid to the hydrophobized surface of the substrate.
Abstract:
A substrate processing apparatus comprises a holder configured to hold a substrate; a processing liquid supply configured to supply a processing liquid onto the substrate held by the holder; and a resistance value varying mechanism configured to vary an electrical resistance of the holder in contact with the substrate.
Abstract:
Disclosed is a substrate liquid processing apparatus. The substrate liquid processing apparatus includes a processing unit, a nozzle, a silylation liquid supply mechanism, and a blocking fluid supply mechanism. The processing unit performs a water repellency imparting processing on a substrate by supplying a silylation liquid to the substrate. The nozzle includes an ejection port configured to supply the silylation liquid to the substrate positioned in the processing unit, and a silylation liquid flow path in which the silylation liquid flows toward the ejection port. The silylation liquid supply mechanism supplies the silylation liquid to the silylation liquid flow path in the nozzle through a silylation liquid supply line. The blocking fluid supply mechanism supplies a blocking fluid that blocks the silylation liquid within the silylation liquid flow path in the nozzle from an atmosphere outside the ejection port.