Abstract:
A twin clutch type transmission connected to an engine of a vehicle and the like in which an end portion of the main shaft is held in the secure and compact manner to contribute to efficient operation of the transmission. In the twin clutch type transmission, the first and second hydraulic disk clutches are coaxially provided to be adjacent with each other, and the inner and outer shafts of the main shaft as a coaxial dual structure are connected to the respective disk clutches coaxially. The ball bearing fixed to the transmission case with the holder plate pierces the left end portion of the inner shaft so as to be supported, and further to be tightened and fixed to the ball bearing with the locknut screwed with the leading end of the left end portion.
Abstract:
A shift control device for a vehicle transmission is provided in which drive means for making a shift drum pivot is connected to the shift drum, wherein the drive means (112) includes a power source (113) disposed on at one end, in the axial direction, of the shift drum (104), and a transmission shaft (117) to which power from the power source (113) is transmitted at the one end, in the axial direction, of the shift drum (104), power from the transmission shaft (117) being transmitted to the other end, in the axial direction, of the shift drum (104). This enables an internal combustion engine to be made compact while avoiding a concentrated disposition of the drive means on one side, in the axial direction, of the shift drum.
Abstract:
This twin-clutch apparatus for use in a transmission of an engine, including: a hydraulic first disk clutch and second disk clutch that exert a predetermined engagement force by pressure members displaced in an axial direction by the pressure of a supply oil from outside, the first disk clutch and the second disk clutch being coaxially arranged adjacent to each other, in which: clutch plates of the first disk clutch and clutch plates of the second disk clutch are different in thickness from each other.
Abstract:
A transmission is provided in which gear trains for multiple shift stages are provided between a countershaft and a first main shaft and second main shaft running coaxially and relatively rotatably through the first main shaft so that the gear trains can be alternatively established, wherein a plurality of odd number stage gear trains (G1, G3, G5) are provided between the second main shaft (27) and the countershaft (28) so that the first speed gear train (G1) is disposed on the opposite side to the first and second clutches (37, 38), an end part of the second main shaft (27) on the first speed gear train (G1) side is rotatably supported on an engine main body via a main shaft side ball bearing (31) having a larger diameter than an outer diameter of a first speed drive gear (89) provided integrally with the second main shaft (27), and an outer race (31a) of the main shaft side ball bearing (31) is fixed to the engine main body via a fixing plate (95) engaging with an outer peripheral part of the outer race (31a). This enables the transmission to be made compact in a direction along the axis of the first and second main shafts.
Abstract:
A fuel injection type two-cycle engine for motorcycles. A fuel injection valve for injecting fuel into an air intake passageway at a predetermined timing is disposed on the upstream side of a reed valve in the air intake passageway communicating with an interior of the engine via the reed valve, with the injection port thereof directed towards the reed valve. An air intake pipe forming the air intake passageway extends nearly in the vertical direction from the upper surface of a crank case at an middle position between a crank shaft extending in the widthwise direction of the vehicle body and a transmission shaft separated from the crank shaft in the back and forth direction and extending in the widthwise direction of the vehicle body, and a fuel injection valve protrudes from this air intake pipe in the back and forth direction. The air intake pipe and the fuel injection valve are positioned between left and right vehicle body frame members above the engine, and a partition plate is provided between the vehicle body frame members and the engine main body.
Abstract:
A gear shift device is used in a transmission of an engine, and includes: a shift drum that changes a speed change stage of the transmission according to a rotational position about an axis; an actuator having a driving shaft substantially orthogonal to this shift drum; a worm shaped barrel cam that is arranged parallel to the driving shaft of this actuator and that has a cam groove on an outer circumference; and a wheel gear that is coaxially fixed on the shift drum and that has a plurality of pins on an outer circumference. At least a pair of each pin of the wheel gear and the cam groove of the barrel cam is engaged with each other, and the shift drum is rotated by the actuator via the barrel cam and the wheel gear, to thereby change the speed change stage of the transmission.
Abstract:
An internal combustion engine includes a continuously variable transmission chamber formed of a crank case and a cover member connected to the crank case to permit the use of oil different between the internal combustion engine and the continuously variable transmission. Thereafter, a sufficient amount of each oil is ensured to not reduce the lowest road clearance. A division wall divides an interior of an oil pan into an internal combustion engine side oil reservoir and a continuously variable transmission side oil reservoir that reserves oil for lubrication of a continuously variable transmission and for speed control thereof, and which is connected to a lower portion of a crank case. The continuously variable transmission side oil reservoir is formed in a width direction of the motorcycle wherein part of continuously variable transmission side oil reservoir expands more outwardly than a continuously variable transmission chamber.
Abstract:
An internal combustion engine includes a continuously variable transmission chamber formed of a crank case and a cover member connected to the crank case to permit the use of oil different between the internal combustion engine and the continuously variable transmission. Thereafter, a sufficient amount of each oil is ensured to not reduce the lowest road clearance. A division wall divides an interior of an oil pan into an internal combustion engine side oil reservoir and a continuously variable transmission side oil reservoir that reserves oil for lubrication of a continuously variable transmission and for speed control thereof, and which is connected to a lower portion of a crank case. The continuously variable transmission side oil reservoir is formed in a width direction of the motorcycle wherein part of continuously variable transmission side oil reservoir expands more outwardly than a continuously variable transmission chamber.
Abstract:
A speed change control device for a transmission of an internal combustion engine includes a driving means having an electric motor for rotatably driving a shift drum. The electric motor has a rotation axis orthogonal to an axis of a shift drum. A barrel cam having a cam groove rotates about an axis parallel to that of the electric motor. A transmission rotation member is interlocked and is coupled to the shift drum so as to be rotatable about the axis orthogonal to the rotation axis of the barrel cam. The transmission rotation member is provided with a plurality of engagement pins that selectively engages the cam groove. The resulting configuration allows the electric motor to be disposed inwardly with respect to an outermost side of the body of the internal combustion engine in the direction of the axis of a shift drum and improves the shift accuracy.
Abstract:
Engines having cylinders of noncircular cross section wherein the cylindrical curve is generated at a preselected constant outwardly normal distance from a closed curve. The closed curve is defined as including two spaced points on a major axis of symmetry of the cylinder with two continuously curved portions extending between these points and curved outwardly from the major axis. The closed curve about which the cylinder curve is generated is preferred such that there is a continuous change of curvature without discontinuity in that curvature in the cylindrical curve. The avoidance of discontinuity in the generating curve aids in mass production consideration and cutter life. A plurality of intake and exhaust port arrangements are disclosed illustrating four intake ports and four exhaust ports on opposite sides of the major axis of symmetry of the defined cylinder. In one embodiment, the outermost of the ports are smaller and are positioned closer to the major axis of symmetry. In another, the valves are oriented such that the stems thereof point to the centerline of the associated camshaft for direct actuation.