摘要:
A thin semiconductor film having at least one an edge is formed on a base whose material is different from the material of the thin semiconductor film. A laser beam, for example, is applied to the semiconductor film thereby to melt the semiconductor film including the edge for thereby beading the edge upwardly. The melted semiconductor film including the edge is solidified and hence recrystallized into a semiconductor crystal. A plurality of spaced reflecting films may be formed on the thin semiconductor film before the laser beam is applied. Various semiconductor devices including a thin-film transistor, a solar cell, and a bipolar transistor may be fabricated of the semiconductor crystal.
摘要:
The present invention is directed to a thin film transistor (TFT) structure having a channel region formed of a crystallized SiGe and is to provide a thin film transistor having a large carrier mobility. In this case, a channel region (4) is formed of a crystallized SiGe thin film.
摘要:
A plasma system which eliminates damage derived from charged particles in the plasma and which is able to perform uniform plasma CVD and plasma etching on a large area substrate, wherein a mesh plate having a plurality of holes is placed at the interface of a plasma generation chamber and a substrate treatment chamber which holds a substrate, a high frequency electrical field being applied between an upper electrode in the plasma generation chamber and the mesh plate so as to disassociate the plasma forming gas by electrodischarge so as to cause the generation of plasma. By this, the plasma is isolated from the substrate. On the other hand, source gas supply ports are opened near the holes of the mesh plate, the source gas being introduced from there being brought into contact with the plasma through the holes, whereby the reaction product can be uniformly produced in a broad area. If the reaction product is a deposit-like substance, plasma CVD becomes possible, while if of the etching type, plasma etching becomes possible.
摘要:
The present invention is directed to a thin film transistor (TFT) structure having a channel region formed of a crystallized SiGe and is to provide a thin film transistor having a large carrier mobility. In this case, a channel region (4) is formed of a crystallized SiGe thin film.
摘要:
The present invention is directed to a thin film transistor (TFT) structure having a channel region formed of a crystallized SiGe and is to provide a thin film transistor having a large carrier mobility. In this case, a channel region (4) is formed of a crystallized SiGe thin film.
摘要:
A method of crystallizing a semiconductor thin film moves a laser beam emitted by a pulse laser in a first direction to irradiate the semiconductor tin film with the laser beam for scanning. The laser beam is split into a plurality of secondary laser beams of a width smaller than the pitch of step feed, respectively having different energy densities forming a stepped energy density distribution decreasing from the middle toward the opposite ends thereof with respect to the direction of step feed. The energy density of the first secondary laser beam corresponding to the middle of the energy distribution is higher than a threshold energy density, i.e., the minimum energy density that will melt the semiconductor thin film to make the same amorphous, and lower than a roughening energy density, i.e., the minimum energy density that will roughen the surface of the semiconductor thin film, the energy density of each of the secondary laser beams on the front side of the first secondary laser beam with respect to the direction of step feed is lower than a melting energy density, i.e., the minimum energy density of each of the secondary laser beams on the back side of the first secondary laser beam with respect to the direction of step feed is higher than the melting energy density and lower than and nearly equal to the threshold energy density.
摘要:
The present invention is directed to a thin film transistor (TFT) structure having a channel region formed of a crystallized SiGe and is to provide a thin film transistor having a large carrier mobility. In this case, a channel region (4) is formed of a crystallized SiGe thin film.
摘要:
An active layer of an insulated-gate type field effect transistor is formed by a thin film of an intrinsic polycrystalline semiconductor and a source electrode and a drain electrode are formed on the active layer. A source region and a drain region are not formed in the active layer. A main gate electrode is formed on a gate insulating film of a portion between the source electrode and the drain electrode. Subgate electrodes are formed on the gate insulating film in a portion between the source electrode and the main gate electrode and a portion between the drain electrode and the main gate electrode, respectively.
摘要:
A method is provided for forming a semiconductor thin film which is free from damage to the film with radiation of a pulse laser beam with the optimum energy value for perfect polycrystallization. For forming an amorphous silicon thin film, a surface of a plastic substrate as a base and insulating layers are each radiated with a pulse laser beam for removing volatile contaminants like a resist as a pretreatment. Damage to the film caused by a gas emitted from the base substrate and the insulating layers resulting from volatile contaminants is thus prevented. A protective layer including a gas barrier layer and a refractory buffer layer is formed on the substrate. Gas penetration from the substrate to the amorphous silicon film is thereby prevented. Conduction of heat produced by energy beam radiation to the substrate is prevented as well. It is possible to increase energy intensity of energy beam radiated for polycrystallization of the amorphous silicon film to the optimal value for perfect polycrystallization.
摘要:
While a storage region 15 has of many dispersed particulates (dots) (15a), the surface density of the particulates (15a) is set to be higher than that of structural holes (pin holes) produced in a tunnel insulating film (14a), or the number of the particulates (15a) in the storage region (15) is set to five or more. While a conduction region (13c) is formed by a polysilicon layer (13) having a surface roughness of 0.1 nm to 100 nm, the number of the particulates (15a) in the storage region (15) is set to be larger than the number of crystal grains in the conduction region (13c). Even when a defect such as a pin hole occurs in the tunnel insulating film (14a) and charges stored in a part of the particulates are leaked, the charges stored in the particulates formed in a region where no defect occurs are not leaked. Thus, information can be held for a long time.