Abstract:
The duty of a PWM signal in a power converter is extracted to feed forward to modulate the slope of a linear oscillating ramp signal or the voltage level of an error signal, so as to modulate the duty of the PWM signal, by which the transient response of the power converter and the stability of the PWM loop both are improved.
Abstract:
A pulse-width-modulation (PWM) control system with nonlinear ramp is disclosed. A nonlinear ramp generator generates a nonlinear ramp varied with the duty (Vout/Vin) in a waveform signal, which could be a logarithm ramp, an exponent ramp, a multi-piecewise-linear ramp, a power ramp or a combination of above. The slope of the ramp is not a constant due to the non-linear characteristic. The voltage Vramp will vary with the input voltage Vin, output voltage Vout, and duty (Vout/Vin), therefore it will reduce the influence of the input voltage Vin or output voltage Vout on the modulation gain and loop gain, even to keep the modulation gain and loop gain in constant value. As mentioned-above, the present invention improves the transient response of system, the sensitivity for variation of Vin and Vout, thus it is capable of correcting the output voltage quickly, for supplying a more steady power output.
Abstract:
The duty of a PWM signal in a power converter is extracted to feed forward to modulate the slope of a linear oscillating ramp signal or the voltage level of an error signal, so as to modulate the duty of the PWM signal, by which the transient response of the power converter and the stability of the PWM loop both are improved.
Abstract:
A pulse-width-modulation (PWM) control system with nonlinear ramp is disclosed. A nonlinear ramp generator generates a nonlinear ramp varied with the duty (Vout/Vin) in a waveform signal, which could be a logarithm ramp, an exponent ramp, a multi-piecewise-linear ramp, a power ramp or a combination of above. The slope of the ramp is not a constant due to the non-linear characteristic. The voltage Vramp will vary with the input voltage Vin, output voltage Vout, and duty (Vout/Vin), therefore it will reduce the influence of the input voltage Vin or output voltage Vout on the modulation gain and loop gain, even to keep the modulation gain and loop gain in constant value. As mentioned-above, the present invention improves the transient response of system, the sensitivity for variation of Vin and Vout, thus it is capable of correcting the output voltage quickly, for supplying a more steady power output.
Abstract:
A semiconductor device package comprises a first semiconductor die having a first source region, a first gate region, and a first drain region attached on a first leadframe, a second semiconductor die having a second source region, a second gate region, and a second drain region attached on a second leadframe, and several pins electrically connected to the leadframes and source and gate regions. The second leadframe is electrically connected to the first source region. The pins connected to the first leadframe and second source region are on a side of the package, and the pins connected to the first gate region, second leadframe, and second gate region are on another side of the package.
Abstract:
For a DC-to-DC converter including a plurality of channels for converting an input voltage to an output voltage, a control circuit comprises a load transient detector to detect the output voltage to provide a quick response signal. In a load transient, the quick response signal triggers a quick transient response period to increase the operational frequency of the converter.
Abstract:
A single-chip common-drain JFET device comprises a drain, two gates and two source arranged such that two common-drain JFETs are formed therewith. Due to the two JFETs merged within a single chip, no wire bonding connection is needed therebetween, thereby without parasitic inductance and resistance caused by bonding wire, and therefore improving the performance and reducing the package cost. The single-chip common-drain JFET device may be applied in buck converter, boost converter, inverting converter, switch, and two-step DC-to-DC converter to improve their performance and efficiency. Alternative single-chip common-drain JFET devices are also provided for current sense or proportional current generation.
Abstract:
A single-chip common-drain JFET device comprises a drain, two gates and two source arranged such that two common-drain JFETs are formed therewith. Due to the two JFETs merged within a single chip, no wire bonding connection is needed therebetween, thereby without parasitic inductance and resistance caused by bonding wire, and therefore improving the performance and reducing the package cost. The single-chip common-drain JFET device may be applied in buck converter, boost converter, inverting converter, switch, and two-step DC-to-DC converter to improve their performance and efficiency. Alternative single-chip common-drain JFET devices are also provided for current sense or proportional current generation.
Abstract:
A single-chip common-drain JFET device comprises a drain, two gates and two source arranged such that two common-drain JFETs are formed therewith. Due to the two JFETs merged within a single chip, no wire bonding connection is needed therebetween, thereby without parasitic inductance and resistance caused by bonding wire, and therefore improving the performance and reducing the package cost. The single-chip common-drain JFET device may be applied in buck converter, boost converter, inverting converter, switch, and two-step DC-to-DC converter to improve their performance and efficiency. Alternative single-chip common-drain JFET devices are also provided for current sense or proportional current generation.
Abstract:
A circuit and method for soft start of a system compare a feedback signal produced from an output voltage of the system with a ramp signal to generate a comparison signal, and enables the system once the comparison signal indicating the ramp signal reaches the feedback signal, such that the output voltage becomes active from a residual voltage toward a target level.