摘要:
A NAND flash memory device incorporates a unique booster plate design. The booster plate is biased during read and program operations and the coupling to the floating gates in many cases reduces the voltage levels necessary to program and read the charge stored in the gates. The booster plate also shields against unwanted coupling between floating gates. Self boosting, local self boosting, and erase area self boosting modes used with the unique booster plate further improve read/write reliability and accuracy. A more compact and reliable memory device can hence be realized according to the present invention.
摘要:
A non-volatile memory is formed having shallow trench isolation structures between floating gates and having control gates extending between floating gates where shallow trench isolation dielectric is etched. Control of etch depth is achieved using ion implantation to create a layer of dielectric with a high etch rate compared with the underlying dielectric. A conductive layer overlies the substrate during implantation. A substrate having small polysilicon features in a memory array and large polysilicon features in a peripheral area is accurately planarized using protrusions in the peripheral area and a soft chemical mechanical polishing step that stops when protrusions are removed.
摘要:
A NAND flash memory device incorporates a unique booster plate design. The booster plate is biased during read and program operations and the coupling to the floating gates in many cases reduces the voltage levels necessary to program and read the charge stored in the gates. The booster plate also shields against unwanted coupling between floating gates. Self boosting, local self boosting, and erase area self boosting modes used with the unique booster plate further improve read/write reliability and accuracy. A more compact and reliable memory device can hence be realized according to the present invention.
摘要:
A NAND flash memory device incorporates a unique booster plate design. The booster plate is biased during read and program operations and the coupling to the floating gates in many cases reduces the voltage levels necessary to program and read the charge stored in the gates. The booster plate also shields against unwanted coupling between floating gates. Self boosting, local self boosting, and erase area self boosting modes used with the unique booster plate further improve read/write reliability and accuracy. A more compact and reliable memory device can hence be realized according to the present invention.
摘要:
The present invention provides a method of constructing trenches for use in microelectronic circuit structures. A photolithographic method is used to create trenches with sloped walls shaping the photoresist masks into sloped profiles. These photoresist masks effectively shape the underlying substrate during subsequent etch steps producing sloped wall trenches. These trenches can be used as shallow trench isolation structures to isolate microelectronic circuit structures from each other.
摘要:
In a two-step spacer fabrication process for a non-volatile memory device, a thin oxide layer is deposited on a wafer substrate leaving a gap in the core of the non-volatile memory device. Implantation and/or oxide-nitride-oxide removal can be accomplished through this gap. After implantation, a second spacer is deposited. After the second spacer deposition, a periphery spacer etch is performed. By the above method, a spacer is formed.
摘要:
Techniques are provided for fabricating memory with metal nanodots as charge-storing elements. In an example approach, a coupling layer such as an amino functional silane group is provided on a gate oxide layer on a substrate. The substrate is dip coated in a colloidal solution having metal nanodots, causing the nanodots to attach to sites in the coupling layer. The coupling layer is then dissolved such as by rinsing or nitrogen blow drying, leaving the nanodots on the gate oxide layer. The nanodots react with the coupling layer and become negatively charged and arranged in a uniform monolayer, repelling a deposition of an additional monolayer of nanodots. In a configuration using a control gate over a high-k dielectric floating gate which includes the nanodots, the control gates may be separated by etching while the floating gate dielectric extends uninterrupted since the nanodots are electrically isolated from one another.
摘要:
Methods and arrangements are provided to increase the process control during the fabrication of the floating/control gate configuration in a non-volatile memory semiconductor device. The methods and arrangements effectively reduce the severity of the topology attributable to the space between adjacent floating gates, by advantageously reducing the thickness of the floating gates. The altered topology allows a subsequently formed control gate to be formed without significant surface depressions. Significant surface depressions in the control gate can lead to cracks in the silicide layer that is formed on the control gate. The cracking usually occurs during subsequent thermal processing of the semiconductor device. Thus the disclosed methods and arrangements prevent cracking of the silicide layer on the control gate, which can affect the performance of the semiconductor device by increasing the resistance of the control gate arrangement.
摘要:
A method of providing thick and thin oxide structures reduces step changes between a core region and a peripheral region on an integrated circuit. Thin LOCOS structures are provided in a core region of a flash memory device, and thick LOCOS structures are provided in a peripheral region of the flash memory device. The device and process are not as susceptible to "race track" problems, "oxide" bump problems, and "stringer" problems. The process utilizes two separate nitride or hard mask layers.
摘要:
Techniques are provided for fabricating memory with metal nanodots as charge-storing elements. In an example approach, metal salt ions are added to a core of a copolymer solution. A metal salt reduction causes the metal atoms to aggregate in the core, forming a metal nanodot. The copolymer solution is applied to a gate oxide on a substrate using spin coating or dip coating. Due to the copolymer configuration, the nanodots are held in a uniform 2D grid on the gate oxide. The polymers are selected to provide a desired nanodot size and spacing between nanodots. A polymer cure and removal process leaves the nanodots on the gate oxide. In a configuration using a control gate over a high-k dielectric floating gate which includes the nanodots, the control gates may be separated by etching while the floating gate dielectric extends uninterrupted since the nanodots are electrically isolated from one another.