摘要:
The invention provides a method of avoiding peeling on the wafer edge and the mark number. The method uses a design rule to expose the multi-layer on a wafer. The limit and the scope of the exposed distance are taken to ensure the polysilicon layers and the metal layers are covered by the dielectric layer after exposure. The polysilicon layers or the metal layers don't unclothe from the overlarge distance at the exposed dielectric layer, so the next structure formed on the exposed dielectric layer doesn't peeling from contacting with the polysilicon layer or the metal layer. The invention avoids to contaminate the wafer and the machine after the particles forming from peeling.
摘要:
A method for forming a shallow trench isolation used to isolate a device is provided. A pad oxide and a mask layer are formed on a substrate and patterned. A trench is formed within the substrate under the patterned region and the trench is filled with insulator to form an insulation plug, which is a shallow trench isolation. A dielectric layer is formed on the whole substrate surface to cover the device region and the insulation plug.
摘要:
A method of enhancing chemical mechanical polishing uniformity is provided. In the fabrication of a shallow trench isolation structure, there are active area regions with different integration formed in a chip. The integration of the active area regions in the chip is computed according circuit designs by a program analysis. One of the active area regions with the highest integration is used as a basis, dummy mesas are formed in the other active area regions to adjust the integration of the chip.
摘要:
A method of reducing resistance of a contact. A semiconductor substrate having at least a conductive lines formed thereon is provided. A self-aligned contact window is formed to expose a part of the substrate. A recess with a ragged surface is formed on the exposed part of substrate within the contact window.
摘要:
An ion implantation method useful for fabricating shallow trench isolation structureimplants phosphorus ions instead of arsenic ions into a substrate when the source/drain regions of an NMOS device are doped. Alternatively, low energy ions are used in the ion implantation for forming the source/drain regions of an NMOS device. Consequently lattice dislocations of the crystal structure within a substrate is reduced and unwanted device leakage current is eliminated.
摘要:
The present invention provides a memory array including a substrate, an isolation region, a plurality of active regions, a plurality of buried bit lines, a plurality of word lines, a plurality of drain regions and a plurality of capacitors. The isolation region and the active regions are disposed in the substrate and the active regions are encompassed and isolated by the isolation region. The buried bit lines are disposed in the substrate and extend in the second direction. The word lines are disposed in the substrate extend in the first direction. The drain regions are disposed in the active region not covered by the word lines. The capacitors are disposed on the substrate and electrically connected to the drain regions.
摘要:
A memory structure having a floating body is provided, which includes a substrate including an active area and an isolation structure surrounding the active area, a first source/drain region in the substrate in the active area, a first floating body in the substrate above the first source/drain region, a second floating body on the first floating body, a second source/drain region on the second floating body, and a trench-type gate structure in the substrate and beside the first floating body. A method of fabricating a memory structure having a floating body is also provided.
摘要:
A manufacturing method for double-side capacitor of stack DRAM has steps of: forming a sacrificial structure in the isolating trench and the capacitor trenches; forming a first covering layer and a second covering layer on the sacrificial structure; modifying a part of the second covering layer; removing the un-modified second covering layer and the first covering layer to expose the sacrificial structure; removing the exposed part of the sacrificial structure to expose the electrode layer; removing the exposed electrode layer to expose the oxide layer; and removing the oxide layer and sacrificial structure to form the double-side capacitors.
摘要:
A DRAM structure has a substrate, a buried transistor with a fin structure, a trench capacitor, and a surface strap on the surface of the substrate. The surface strap is used to electrically connect a drain region to the trench capacitor.
摘要:
The invention discloses a method of forming a finFET device. A hard mask layer is formed on an active area of a semiconductor substrate. A portion of the hard mask layer is etched to form a recess. A conformal gate defining layer is deposited on the recess and a tilt angle ion implantation process is performed. A part of the gate defining layer is removed to define a fin pattern. The fin pattern is subsequently transferred to the hard mask layer. The patterned hard mask layer having the fin pattern is utilized as an etching mask, and the semiconductor substrate is etched to form a fin structure.