摘要:
A layered organic light emitting diode (OLED) device comprises a buckled structure over a portion of the light emitting face to provide improved light output relative to flat OLED devices. The buckled structure has a fine buckling and a gross buckling, which are quasi-periodic. Embodiments of the invention are directed to a method of producing the OLED device comprising a buckled structure, where a transparent substrate coated with a transparent elastomeric layer has a thin metal layer deposited on a portion of the elastomeric layer at an elevated temperature. Upon cooling the metal layer buckles with the formation of the quasi-periodic buckling. Subsequently the metal layer is oxidized to a metal oxide layer that retains the buckling. An OLED with a buckling structure over a portion of the emitting face is constructed on the metal oxide layer and retains the buckling of the metal oxide layer.
摘要:
Embodiments of the invention pertain to a method and apparatus for sensing infrared (IR) radiation. In a specific embodiment, a night vision device can be fabricated by depositing a few layers of organic thin films. Embodiments of the subject device can operate at voltages in the range of 10-15 Volts and have lower manufacturing costs compared to conventional night vision devices. Embodiments of the device can incorporate an organic phototransistor in series with an organic light emitting device. In a specific embodiment, all electrodes are transparent to infrared light. An IR sensing layer can be incorporated with an OLED to provide IR-to-visible color up-conversion. Improved dark current characteristics can be achieved by incorporating a poor hole transport layer material as part of the IR sensing layer.
摘要:
Photodetectors, methods of fabricating the same, and methods using the same to detect radiation are described. A photodetector can include a first electrode, a light sensitizing layer, an electron blocking/tunnelling layer, and a second electrode. Infrared-to-visible upconversion devices, methods of fabricating the same, and methods using the same to detect radiation are also described. An Infrared-to-visible upconversion device can include a photodetector and an OLDE coupled to the photodetector.
摘要:
Embodiments of the subject invention relate to a method and apparatus for infrared (IR) detection. Organic layers can be utilized to produce a phototransistor for the detection of IR radiation. The wavelength range of the IR detector can be modified by incorporating materials sensitive to photons of different wavelengths. Quantum dots of materials sensitive to photons of different wavelengths than the host organic material of the absorbing layer of the phototransistor can be incorporated into the absorbing layer so as to enhance the absorption of photons having wavelengths associated with the material of the quantum dots. A photoconductor structure can be used instead of a phototransistor. The photoconductor can incorporate PbSe or PbS quantum dots. The photoconductor can incorporate organic materials and part of an OLED structure. A detected IR image can be displayed to a user. Organic materials can be used to create an organic light-emitting device.
摘要:
An image sensor is constructed on a substrate that is a read-out transistor array with a multilayer array of infrared photodetectors formed thereon. The infrared photodetectors include a multiplicity of layers including an infrared transparent electrode distal to the substrate, a counter electrode directly contacting the substrate, and an infrared sensitizing layer that comprises a multiplicity of nanoparticles. The layers can be inorganic or organic materials. In addition to the electrodes and sensitizing layers, the multilayer stack can include a hole-blocking layer, an electron-blocking layer, and an anti-reflective layer. The infrared sensitizing layer can be PbS or PbSe quantum dots.
摘要:
An ultraviolet light detector has a pn-junction of wide-gap semiconductors layers, where a p-type semiconductor layer with a polycrystalline metal oxide contacts an n-type semiconductor layer of metal oxide nanoparticles, or the converse. The ultraviolet detector is prepared using solvent based deposition methods and where temperatures can be maintained below 300° C.
摘要:
Embodiments of the invention are directed to IR photodetectors with gain resulting from the positioning of a charge multiplication layer (CML) between the cathode and the IR sensitizing layer of the photodetector, where accumulating charge at the CML reduces the energy difference between the cathode and the CML to promote injection of electrons that result in gain for an electron only device. Other embodiments of the invention are directed to inclusion of the IR photodetectors with gain into an IR-to-visible up-conversion device that can be used in night vision and other applications.
摘要:
Embodiments of the invention are directed to IR photodetectors with gain resulting from the positioning of a charge multiplication layer (CML) between the cathode and the IR sensitizing layer of the photodetector, where accumulating charge at the CML reduces the energy difference between the cathode and the CML to promote injection of electrons that result in gain for an electron only device. Other embodiments of the invention are directed to inclusion of the IR photodetectors with gain into an IR-to-visible up-conversion device that can be used in night vision and other applications.
摘要:
Embodiments of the invention are directed to an improved device for sensing infrared (IR) radiation with up-conversion to provide an output of electromagnetic radiation having a shorter wavelength than the incident IR radiation, such as visible light. The device comprises an anode, a hole blocking layer to separate an IR sensing layer from the anode, an organic light emitting layer that is separated from the anode by the IR sensing layer, and a cathode. The hole blocking layer assures that when a potential is applied between the anode and the cathode the organic light emitting layer generates electromagnetic radiation only when the IR sensing layer is irradiated with IR radiation.
摘要:
A layered organic light emitting diode (OLED) device comprises a buckled structure over a portion of the light emitting face to provide improved light output relative to flat OLED devices. The buckled structure has a fine buckling and a gross buckling, which are quasi-periodic. Embodiments of the invention are directed to a method of producing the OLED device comprising a buckled structure, where a transparent substrate coated with a transparent elastomeric layer has a thin metal layer deposited on a portion of the elastomeric layer at an elevated temperature. Upon cooling the metal layer buckles with the formation of the quasi-periodic buckling. Subsequently the metal layer is oxidized to a metal oxide layer that retains the buckling. An OLED with a buckling structure over a portion of the emitting face is constructed on the metal oxide layer and retains the buckling of the metal oxide layer.