摘要:
The present invention provides processes for checking the operability of a nitrogen oxide storage catalyst during operation of a lean burn engine. The processes of the present invention utilize a nitrogen oxide storage material, a catalytically active component and optionally an oxygen storage material. During lean burn engine operation, damage to the catalytically active components is detected if the nitrogen oxide storage capacity in the kinetically controlled temperature range is lowered and damage to the storage material is detected if the nitrogen oxide storage capacity is lowered in the thermodynamically controlled temperature range.
摘要:
The present invention is directed to a particle filter to remove soot from the exhaust gas of a diesel engine. The particle filter contains a catalytically active coating on a filter body to accelerate bum-off during a regeneration phase of the soot particles collected on the filter. The particle filter comprises a catalytic coating containing compounds of barium, compounds of magnesium, and at least one element of the platinum group metals. The invention is further directed to a process for accelerated combustion of soot particles collected on the filter from lean exhaust gas of a diesel engine in which the soot particles have a soot ignition temperature and the particle filter is actively regenerated from time to time by raising the temperature of the particle filter above the soot ignition temperature and burning off the soot particles.
摘要:
A powdered catalyst material based on aluminum oxide, which contains at least one basic metal oxide and at least one noble metal from the platinum group of the Periodic Table of Elements in addition to aluminum oxide. The catalyst material is obtainable by loading a support material already stabilized by basic oxides by renewed impregnation with further basic oxides. After drying and calcining this post-impregnated material at temperatures below 800° C., the catalytically active noble metals are also incorporated into the support material by impregnation.
摘要:
A process for removing soot from the exhaust gas of a diesel engine by oxidizing the nitrogen monoxide present in the exhaust gas to nitrogen dioxide, separating the soot from the exhaust gas stream and oxidizing the soot using the nitrogen dioxide produced. The process is performed in at least two consecutive process stages and the soot is separated from the exhaust gas stream with an efficiency W between 0.05 and 0.95 in each process stage, wherein each process stage can be assigned a transmission for soot in accordance with T=1−W and the total transmission of the process for soot is given as the product of the transmissions of all the process stages.
摘要:
A sulfur oxide storage material contains a magnesium-aluminum spinel (MgO.Al2O3) and can be used as a so-called “sulfur trap” to remove sulfur oxides from oxygen-containing exhaust gases of industrial processes. In particular, it can be used for the catalytic purification of exhaust gas from internal-combustion engines to remove the sulfur oxides from the exhaust gas in order to protect the exhaust gas catalysts from sulfur poisoning. The material displays a molar ratio of magnesium oxide to aluminum oxide in the range of over 1.1:1, and the magnesium oxide present in stoichiometric excess is homogeneously distributed in a highly disperse form in the storage material.
摘要翻译:硫氧化物储存材料含有镁 - 铝尖晶石(MgO·Al 2 O 3),并且可以用作所谓的“硫阱”,以从工业过程的含氧废气中除去硫氧化物。 特别地,其可以用于从内燃机排出的废气的催化净化,以从废气中除去硫氧化物,以保护废气催化剂免受硫中毒。 该材料显示氧化铝与氧化铝的摩尔比在1.1:1以上,以化学计量过量存在的氧化镁以高分散形式均匀地分布在储存材料中。
摘要:
An exhaust gas treatment unit for the selective catalytic reduction of nitrogen oxides under lean exhaust gas conditions which contains at least one catalyst with catalytically active components for selective catalytic reduction (SCR components). The exhaust gas treatment unit is characterised in that the catalyst also contains, in addition to SCR components, at least one storage component for nitrogen oxides (NOx components).
摘要:
An oxygen storage material comprising cerium oxide and at least one second oxide of a metal M1 is disclosed as well as a process for manufacturing the material and the use of this material in an exhaust gas cleaning catalyst. In a preferred embodiment the oxygen storage material comprises particles from a Ce/M1 mixed oxide solid solution coated with an oxide of another metal M2. Metal M1 e.g. can be calcium or zirconium while metal M2 most preferably is aluminum.
摘要:
The present invention is directed to a particle filter to remove soot from the exhaust gas of a diesel engine. The particle filter contains a catalytically active coating on a filter body to accelerate burn-off during a regeneration phase of the soot particles collected on the filter. The particle filter comprises a catalytic coating containing compounds of barium, compounds of magnesium, and at least one element of the platinum group metals. The invention is further directed to a process for accelerated combustion of soot particles collected on the filter from lean exhaust gas of a diesel engine in which the soot particles have a soot ignition temperature and the particle filter is actively regenerated from time to time by raising the temperature of the particle filter above the soot ignition temperature and burning off the soot particles.
摘要:
A starter catalyst for the purification of the exhaust gases from internal combustion engines, which include palladium on aluminum oxide and of barium oxide, as well as a process for its production. The barium oxide and palladium are together deposited in a finely divided state on the supporting material aluminum oxide and the average particle size of the palladium crystallites is between 3 and 7 nm. The small crystallite size of palladium and the barium oxide likewise deposited in finely divided state on the supporting material impart to the catalyst a high activity and long-term stability to high temperature stresses.
摘要:
A process for checking the operability of an exhaust gas purification catalyst for diesel engines, which has a light-off temperature and a degree of conversion rCO for carbon monoxide (CO), by direct measurement of the carbon monoxide concentration in combination with a temperature measurement. To evaluate the remaining catalytic activity of the catalyst the difference &Dgr;T between the current catalyst exit temperature TE of the exhaust gas and the light-off temperature TCO,50%,fresh of the fresh catalyst for carbon monoxide stored as a function of the speed and load &Dgr;T=TE−TCO,50%,fresh is determined and the degree of conversion rCO for carbon monoxide is ascertained.