Abstract:
A paddle card includes a circuit board, a pad group and ground planes. The circuit board has an upper surface and a lower surface opposite to each other. The pad group is adapted to connect wires of a cable or terminals of a plug, and includes a pair of upper differential pads on the upper surface and a pair of lower differential pads on the lower surface. The pair of upper differential pads and the pair of lower differential pads are corresponding to each other respectively and configured up and down. The ground planes are spaced at intervals between the upper surface and the lower surface. The ground plane below the pair of upper differential pads has an opening corresponding thereto. A portion of the at least one ground plane between the pair of upper differential pads and the pair of lower differential pads is solid as a shield.
Abstract:
A paddle card includes a circuit board, a pad group and first to fourth shielding planes. The circuit board has an upper surface and a lower surface opposite to each other. The pad group is adapted to connect wires of a cable or terminals of a plug, and includes a pair of upper differential pads on the upper surface and a pair of lower differential pads on the lower surface. The pair of upper differential pads is respectively configured corresponding to the pair of lower differential pads in an up and down manner. The first to fourth shielding planes are stacked at intervals between the upper and lower surfaces in sequence. An orthogonal projection of a second opening of the second shielding plane on a geometric plane that a pair of third openings of the third shielding plane is located in is separate from the pair of third openings.
Abstract:
A semiconductor device includes an insulating layer disposed over a substrate, wherein the insulating layer has a center region. A first winding portion and a second winding portion are electrically connected to the first winding portion, disposed in a first level of the insulating layer and surrounding the center region, wherein each of the first winding portion and the second winding portion comprises a plurality of conductive lines arranged from the inside to the outside. A first extending conductive line and a second extending conductive line partially surround the first extending conductive line, and are disposed in the first level of the insulating layer, wherein the first winding portion and the second winding portion surround the first extending conductive line and the second extending conductive line. A third extending conductive line is disposed in a second level of the insulating layer and surrounding the center region.
Abstract:
A paddle card includes a circuit board, a pad group and first to fourth shielding planes. The circuit board has an upper surface and a lower surface opposite to each other. The pad group is adapted to connect wires of a cable or terminals of a plug, and includes a pair of upper differential pads on the upper surface and a pair of lower differential pads on the lower surface. The pair of upper differential pads is respectively configured corresponding to the pair of lower differential pads in an up and down manner. The first to fourth shielding planes are stacked at intervals between the upper and lower surfaces in sequence. An orthogonal projection of a second opening of the second shielding plane on a geometric plane that a pair of third openings of the third shielding plane is located in is separate from the pair of third openings.
Abstract:
A semiconductor device including a first insulating layer and a second insulating layer sequentially disposed on a substrate having a center region. The semiconductor device includes a first winding portion and a second winding portion disposed in the second insulating layer and surrounding the center region A second conductive line and a third conductive line are arranged from the inside to the outside. In addition, each of the first, second and third conductive lines has a first end and a second end. The semiconductor device also includes a coupling portion disposed in the first and second insulating layers between the first and second winding portions, and having a first pair of connection layers cross-connecting the second ends of the first and second conductive lines, and a second pair of connection layers cross-connecting the first ends of the second and third conductive lines.
Abstract:
A pin arrangement adapted to a FPC connector is provided. The pin arrangement includes a pin lane. The pin lane includes a pair of ground pins, a pair of differential pins and at least one not-connected (NC) pin. The differential pins are located between the pair of ground pins. The at least one NC pin is located between the pair of differential pins or between one of the pair of ground pins and one of the pair of differential pins adjacent thereto. By adding the at least one NC pin between the pair of differential pins and/or between the differential pin and the ground pin adjacent thereto, a distance between each of the pair of the differential pins and/or between the differential pin and the ground pin is increased, and thus a differential characteristic impedance of the pair of differential pins is raised to reduce the impact of impedance mismatch.
Abstract:
A through-hole layout structure is suitable for a circuit board. The through-hole layout structure includes a pair of first differential through-holes, a pair of second differential through-holes, a first ground through-hole, a second ground through-hole, and a third ground through-hole, which are all arranged on a first line.The first ground through-hole is located between the pair of first differential through-holes and the pair of second differential through-holes. The pair of first differential through-holes is located between the first ground through-hole and the second ground through-hole. The pair of second differential through-holes is located between the first ground through-hole and the third ground through-hole.
Abstract:
A semiconductor device including a first insulating layer and a second insulating layer sequentially disposed on a substrate is disclosed. A first conductive line and a second conductive line are disposed in the first insulating layer, and each of the first and second conductive lines has a first end and a second end, wherein the second ends of the first and second conductive lines are coupled to each other. A first winding portion and a second winding portion are disposed in the second insulating layer, and each of the first and second winding portions includes a third conductive line and a fourth conductive line arranged from the inside to the outside. Each of the third and fourth conductive lines has a first end and a second end, wherein the first and second conductive lines overlap at least a portion of the third conductive lines.
Abstract:
A semiconductor device includes first and second winding portions disposed in a first level of an insulating layer and surrounding a center region thereof. Each of the winding portions includes conductive lines arranged from the inside to the outside. First and second extending conductive lines are disposed in the first level of the insulating layer. A third extending conductive line is disposed in a second level of the insulating layer. The first extending conductive line is coupled between the innermost conductive line of the second winding and the third extending conductive line. The second extending conductive line is coupled between the innermost conductive line of the first winding portion and the third extending conductive line. The first extending conductive line and the third extending conductive line coupled thereto are arranged in a helix or a spiral spatial configuration.
Abstract:
A paddle card includes a circuit board, a pad group and ground planes. The circuit board has an upper surface and a lower surface opposite to each other. The pad group is adapted to connect wires of a cable or terminals of a plug, and includes a pair of upper differential pads on the upper surface and a pair of lower differential pads on the lower surface. The pair of upper differential pads and the pair of lower differential pads are corresponding to each other respectively and configured up and down. The ground planes are spaced at intervals between the upper surface and the lower surface. The ground plane below the pair of upper differential pads has an opening corresponding thereto. A portion of the at least one ground plane between the pair of upper differential pads and the pair of lower differential pads is solid as a shield.