Abstract:
A protection arrangement for a current collector arranged on a vehicle having a rechargeable energy storage includes a first protective state in which the current collector is covered by the protection arrangement and a second open state in which the protection arrangement allows contact between the current collector and a corresponding current supply during charging of the energy storage and where the protection arrangement is automatically opened from the protective state to the open state when the vehicle has reached a predefined charging position. The current collector can be enclosed when the vehicle is not charged and the protection arrangement can open automatically when a charging position is reached. This can improve the safety of the vehicle and obviate the need of a specific circuit breaker that can disconnect the current collector from the electric energy storage. The charging of the vehicle can also be simplified.
Abstract:
A method is provided for controlling charging of an energy storage system in a vehicle including an electric machine which is arranged for propulsion of the vehicle. The method includes initiating the charging upon connection of the energy storage system to an external power supply via connector elements; and transmitting, between the vehicle and the external power supply, a control signal including data related to the charging by a wireless transmission link. The method furthermore includes evaluating whether the control signal is received; and terminating the charging in the event that the control signal is not received. An arrangement for controlling charging of an energy storage system is also provided.
Abstract:
A particle removing arrangement is adapted to remove particles from the upper contact surface of an electric rail in an electric highway by the use of an airflow, where the particle removing arrangement is arranged in front of a current collector of a vehicle, where the particle removing arrangement includes an inlet opening for inlet of air and an outlet opening for outlet of air, where the inlet opening is directed in a forward direction and the outlet opening is directed in a sideway to rearward direction in relation to the driving direction of the vehicle, and where the particle removing arrangement creates a particle removing airflow from a forward movement of the vehicle. Particles can be removed from an electric rail without the use of an external power source. The particles can also be removed in a contact-less manner, such that there is no friction or abrasion between the particle removing arrangement and the electric rail.
Abstract:
A hybrid energy system is provided in a vehicle including an autonomous power supply and being connectable to an external power supply infrastructure along the route of the vehicle, and which vehicle is arranged to operate in an autonomous power supply mode and/or in an external power supply mode. The system includes a first high voltage circuit including a first traction motor connected to an energy storage system by a first power converter for propelling the vehicle; a second high voltage circuit including a second traction motor connectable to an external power supply by a second power converter for propelling the vehicle; and where the first high voltage circuit and the second high voltage circuit are connectable by a third power converter between the first and the second power converters. A method for operating the hybrid energy system is also provided.
Abstract:
A vehicle provided with an electric propulsion system and a method for controlling the electric propulsion system are provided. The system includes a first Electrical Motor (EM1) connected via first Electrical Connections (EC1) to an on-board Energy Storage System (ESS1) and drivingly connected to wheels. The system further includes a second Electrical Motor (EM2) connected via second Electrical Connections (EC2) to one or several electrical energy sources and drivingly connected to wheels. The system is controlled by an Electronic Control Unit (ECU) and the Electrical Motors (EM1, EM2) are used in dependence of the State Of Charge (SOC) level in the first Energy Storage System (ESS1) and the availability of electrical energy for the second Electrical Motor (EM2). The ECU is programmed to include an energy transfer mode in which the use of the second Electric Motor (EM2) for propulsive force is increased and the use of the first Electric Motor (EM1) for regenerative breaking is increased when the State Of Charge (SOC) level in the first electrical Energy Storage System (ESS1) is below a defined level and it is estimated that there is more electrical energy available for the second Electrical Motor (EM2) than for the first Electrical Motor (EM1).
Abstract:
A method for determining the efficiency of an electric energy system of a hybrid vehicle includes determining a measure representative of a relation between the electrical brake energy and the mechanical brake energy, by determining a requested brake energy for a first vehicle retardation, and by determining an actual electrical brake energy and the actual mechanical brake energy during the vehicle retardation, determining a new measure representative of a relation between the electrical brake energy and the mechanical brake energy at a subsequent second similar vehicle retardation, comparing the determined measures representative of a relation between the electrical brake energy and the mechanical brake energy of the first and second vehicle retardations, where the actual efficiency of the energy system is obtained from the change in the measure representative of a relation between the electrical brake energy and the mechanical brake energy of the first and second vehicle retardations.