摘要:
A method for etching an organic anti-reflective coating (ARC) layer on a substrate in a plasma processing system comprising: introducing a process gas comprising ammonia (NH3), and a passivation gas; forming a plasma from the process gas; and exposing the substrate to the plasma. The process gas can, for example, constitute NH3 and a hydrocarbon gas such as at least one of C2H4, CH4, C2H2, C2H6, C3H4, C3H6, C3H8, C4H6, C4H8, C4H10, C5H8, C5H10, C6H6, C6H10, and C6H12. Additionally, the process chemistry can further comprise the addition of helium. The present invention further presents a method for forming a bilayer mask for etching a thin film on a substrate, wherein the method comprises: forming the thin film on the substrate; forming an ARC layer on the thin film; forming a photoresist pattern on the ARC layer; and transferring the photoresist pattern to the ARC layer with an etch process using a process gas comprising ammonia (NH3), and a passivation gas.
摘要:
A method and system for etching an organic layer on a substrate in a plasma processing system comprising: introducing a process gas comprising NxOy, wherein x, y represent integers greater than or equal to unity. Additionally, the process chemistry can further comprise the addition of an inert gas, such as a Noble gas (i.e., He, Ne, Ar, Kr, Xe, Rn). The present invention further presents a method for forming a bilayer mask for etching a thin film on a substrate, wherein the method comprises: forming the thin film on the substrate; forming an organic layer on the thin film; forming a photoresist pattern on the organic layer; and transferring the photoresist pattern to the organic layer with an etch process using a process gas comprising NxOy, wherein x, y represent integers greater than or equal to unity.
摘要翻译:一种用于在等离子体处理系统中蚀刻衬底上的有机层的方法和系统,包括:引入包含N x O O y O y的工艺气体,其中x,y表示更大的整数 大于或等于统一 另外,工艺化学可以进一步包括添加惰性气体,例如Noble气体(即He,Ne,Ar,Kr,Xe,Rn)。 本发明还提供一种用于形成用于在衬底上蚀刻薄膜的双层掩模的方法,其中所述方法包括:在所述衬底上形成所述薄膜; 在薄膜上形成有机层; 在有机层上形成光致抗蚀剂图案; 以及使用包括N x O x O y X y的工艺气体的蚀刻工艺将光致抗蚀剂图案转移到有机层,其中x,y表示大于或等于1的整数。
摘要:
A method for etching an organic anti-reflective coating (ARC) layer on a substrate in a plasma processing system comprising: introducing a process gas comprising ammonia (NH3), and a passivation gas; forming a plasma from the process gas; and exposing the substrate to the plasma. The process gas can, for example, constitute NH3 and a hydrocarbon gas such as at least one of C2H4, CH4, C2H2, C2H6, C3H4, C3H6, C3H8, C4H6, C4H8, C4H10, C5H8, C5H10, C6H6, C6H10, and C6H12. Additionally, the process chemistry can further comprise the addition of helium. The present invention further presents a method for forming a bilayer mask for etching a thin film on a substrate, wherein the method comprises: forming the thin film on the substrate; forming an ARC layer on the thin film; forming a photoresist pattern on the ARC layer; and transferring the photoresist pattern to the ARC layer with an etch process using a process gas comprising ammonia (NH3), and a passivation gas.
摘要翻译:一种在等离子体处理系统中蚀刻衬底上的有机抗反射涂层(ARC)层的方法,包括:引入包含氨(NH 3)和钝化气体的工艺气体; 从工艺气体形成等离子体; 并将衬底暴露于等离子体。 处理气体可以例如构成NH 3和烃气体,例如C 2 H 4,CH 4,C 2 H 2,C 2 H 6,C 3 H 4,C 3 H 6,C 3 H 8,C 4 H 6,C 4 H 8,C 4 H 10,C 5 H 8,C 5 H 10,C 6 H 6,C 6 H 10和C 6 H 12中的至少一种 。 另外,工艺化学可以进一步包括添加氦。 本发明还提供一种用于形成用于在衬底上蚀刻薄膜的双层掩模的方法,其中所述方法包括:在所述衬底上形成所述薄膜; 在薄膜上形成ARC层; 在ARC层上形成光刻胶图案; 以及使用包含氨(NH 3)和钝化气体的工艺气体的蚀刻工艺将光致抗蚀剂图案转移到ARC层。
摘要:
A method is provided for low-pressure plasma ashing to remove photoresist remnants and etch residues that are formed during preceding plasma etching of dielectric layers. The ashing method uses a two-step plasma process involving an oxygen-containing gas, where low or zero bias is applied to the substrate in the first cleaning step to remove significant amount of photoresist remnants and etch residues from the substrate, in addition to etching and removing detrimental fluoro-carbon residues from the chamber surfaces. An increased bias is applied to the substrate in the second cleaning step to remove the remains of the photoresist and etch residues from the substrate. A chamber pressure less than 20 mTorr is utilized in the second cleaning step. The two-step process reduces the memory effect commonly observed in conventional one-step ashing processes. A method of endpoint detection can be used to monitor the ashing process.
摘要:
A wafer W is placed on a lower electrode 106 provided inside a processing chamber 102 of a plasma processing apparatus 100. A film constituted an organic polysiloxane, which is a Low-K material is formed at the wafer W. Plasma is generated inside the processing chamber 102 to implement an etching process by using a photoresist film on the organic polysiloxane film as a mask and an opening pattern in which a portion of the organic polysiloxane film is exposed is formed. After the etching process, the wafer W is left inside the processing chamber 102. The pressure inside the processing chamber 102 is set at a level within the range of 30 mTorr (4.00 Pa)˜150 mTorr (20.0 Pa) by inducing a processing gas into the processing chamber 102 and evacuating the gas from the processing chamber 102. At the pressure level the set, the gas inside the processing chamber 102 is raised to plasma and the photoresist film is ashed. Thus, a plasma processing method which makes it possible to remove the photoresist film on the organic polysiloxane film without compromising the low dielectric constant characteristics of the organic polysiloxane film is achieved.
摘要:
A method is provided for plasma ashing to remove photoresist remnants and etch residues formed during preceding plasma etching of dielectric layers. The ashing method uses a two-step plasma process involving a hydrogen-containing gas, where low or zero bias is applied to the substrate in the first cleaning step to remove significant amount of photoresist remnants and etch residues from the substrate, in addition to etching and removing detrimental fluorocarbon residues from the chamber surfaces. An increased bias is applied to the substrate in the second cleaning step to remove the remains of the photoresist and etch residues from the substrate. A chamber pressure less than 20 mTorr is utilized in the second cleaning step. The two-step process reduces the memory effect commonly observed in conventional one-step ashing processes. A method of endpoint detection can be used to monitor the ashing process.
摘要:
A method is provided for low-pressure plasma ashing to remove photoresist remnants and etch residues that are formed during preceding plasma etching of dielectric layers. The ashing method uses a two-step plasma process involving an oxygen-containing gas, where low or zero bias is applied to the substrate in the first cleaning step to remove significant amount of photoresist remnants and etch residues from the substrate, in addition to etching and removing detrimental fluoro-carbon residues from the chamber surfaces. An increased bias is applied to the substrate in the second cleaning step to remove the remains of the photoresist and etch residues from the substrate. A chamber pressure less than 20 mTorr is utilized in the second cleaning step. The two-step process reduces the memory effect commonly observed in conventional one-step ashing processes. A method of endpoint detection can be used to monitor the ashing process.
摘要:
A method and system for removing photoresist from a substrate in a plasma processing system comprising: introducing a process gas comprising NxOy, wherein x, y represent integers greater than or equal to unity. Additionally, the process chemistry can further comprise the addition of an inert gas, such as a Noble gas (i.e., He, Ne, Ar, Kr, Xe, Rn). The present invention further presents a method for forming a feature in a thin film on a substrate, wherein the method comprises: forming a dielectric layer on a substrate; forming a photoresist pattern on the dielectric layer; transferring the photoresist pattern to the dielectric layer by etching; and removing the photoresist from the dielectric layer using a process gas comprising NxOy, wherein x and y are integers greater than or equal to unity.
摘要翻译:一种用于在等离子体处理系统中从衬底去除光致抗蚀剂的方法和系统,包括:引入包含N x O x O y的工艺气体,其中x,y表示大于或等于 等于统一 另外,工艺化学可以进一步包括添加惰性气体,例如Noble气体(即He,Ne,Ar,Kr,Xe,Rn)。 本发明还提供了一种在衬底上形成薄膜中的特征的方法,其中所述方法包括:在衬底上形成电介质层; 在介电层上形成光致抗蚀剂图案; 通过蚀刻将光致抗蚀剂图案转印到电介质层; 以及使用包含N x O x O y的工艺气体从介电层除去光致抗蚀剂,其中x和y是大于或等于1的整数。
摘要:
A method of dry developing a multi-layer mask having a silicon-containing anti-reflective coating (ARC) layer on a substrate is described. The method comprises forming the multi-layer mask on the substrate, wherein the multi-layer mask comprises a lithographic layer overlying the silicon-containing ARC layer. A feature pattern is then formed in the lithographic layer using a lithographic process, wherein the feature pattern comprises a first critical dimension (CD). Thereafter, the feature pattern is transferred from the lithographic layer to the silicon-containing ARC layer using a dry plasma etching process, wherein the first CD in the lithographic layer is reduced to a second CD in the silicon-containing layer and a first edge roughness is reduced to a second edge roughness in the silicon-containing ARC layer.
摘要:
A method of dry developing a multi-layer mask having a silicon-containing anti-reflective coating (ARC) layer on a substrate is described. The method comprises forming the multi-layer mask on the substrate, wherein the multi-layer mask comprises a lithographic layer overlying the silicon-containing ARC layer. A feature pattern is then formed in the lithographic layer using a lithographic process, wherein the feature pattern comprises a first critical dimension (CD). Thereafter, the feature pattern is transferred from the lithographic layer to the silicon-containing ARC layer using a dry plasma etching process, wherein the first CD in the lithographic layer is reduced to a second CD in the silicon-containing layer and a first edge roughness is reduced to a second edge roughness in the silicon-containing ARC layer.