摘要:
A method of forming a notched gate structure having substantially vertical sidewalls and a sub-0.05 &mgr;m electrical critical dimension is provided. The method includes forming a conductive layer on an insulating layer; forming a mask on the conductive layer so as to at least protect a portion of the conductive layer; anisotropically etching the conductive layer not protected by the mask so as to thin the conductive layer to a predetermined thickness and to form a conductive feature underlying the mask, the conductive feature having substantially vertical sidewalls; forming a passivating layer at least on the substantially vertical sidewalls; and isotropically etching remaining conductive layer not protected by the mask to remove the predetermined thickness thereby exposing a lower portion of said conductive feature not containing the passivating layer, while simultaneously removing notched regions in the lower portion of the conductive feature.
摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
A CMOS silicide metal integration scheme that allows for the incorporation of silicide contacts (S/D and gates) and metal silicide gates using a self-aligned process (salicide) as well as one or more lithography steps is provided. The integration scheme of the present invention minimizes the complexity and cost associated in fabricating a CMOS structure containing silicide contacts and silicide gate metals.
摘要:
Silicide is introduced into the gate region of a CMOS device through different process options for both conventional and replacement gate types processes. Placement of silicide in the gate itself, introduction of the silicide directly in contact with the gate dielectric, introduction of the silicide as a fill on top of a metal gate all ready in place, and introduction the silicide as a capping layer on polysilicon or on the existing metal gate, are presented. Silicide is used as an option to connect between PFET and NFET devices of a CMOS structure. The processes protect the metal gate while allowing for the source and drain silicide to be of a different silicide than the gate silicide. A semiconducting substrate is provided having a gate with a source and a drain region. A gate dielectric layer is deposited on the substrate, along with a metal gate layer. The metal gate layer is then capped with a silicide formed on top of the gate, and conventional formation of the device then proceeds. A second silicide may be employed within the gate. A replacement gate is made from two different metals (dual metal gate replacement) prior to capping with a silicide.
摘要:
A notched gate MOS device includes either an encapsulated low dielectric material or encapsulated air or a vacuum at the bottom of a notched gate. Due to the low dielectric constant at the site of interface between the gate and the source/drain, the capacitance loss at that site is significantly reduced.
摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
A method for fabricating dual material gate structures in a device is provided. The dual material gate structures have different gate electrode materials in different regions of the device. In one embodiment, the method includes providing a substrate having a patterned first gate electrode and a patterned first gate dielectric layer disposed on the substrate, removing a portion of the first gate electrode from the substrate to define a trench on the substrate, and filling the trench to form a second gate electrode.
摘要:
Silicide is introduced into the gate region of a CMOS device through different process options for both conventional and replacement gate types processes. Placement of silicide in the gate itself, introduction of the silicide directly in contact with the gate dielectric, introduction of the silicide as a fill on top of a metal gate all ready in place, and introduction the silicide as a capping layer on polysilicon or on the existing metal gate, are presented. Silicide is used as an option to connect between PFET and NFET devices of a CMOS structure. The processes protect the metal gate while allowing for the source and drain silicide to be of a different silicide than the gate silicide. A semiconducting substrate is provided having a gate with a source and a drain region. A gate dielectric layer is deposited on the substrate, along with a metal gate layer. The metal gate layer is then capped with a silicide formed on top of the gate, and conventional formation of the device then proceeds. A second silicide may be employed within the gate. A replacement gate is made from two different metals (dual metal gate replacement) prior to capping with a silicide.
摘要:
A CMOS silicide metal integration scheme that allows for the incorporation of silicide contacts (S/D and gates) and metal silicide gates using a self-aligned process (salicide) as well as one or more lithography steps is provided. The integration scheme of the present invention minimizes the complexity and cost associated with fabricating a CMOS structure containing silicide contacts and silicide gate metals.