摘要:
A power semiconductor device includes a backside metal layer, a substrate formed on the backside metal layer, a semiconductor layer formed on the substrate, and a frontside metal layer. The semiconductor layer includes a first trench structure including a gate oxide layer formed around a first trench with poly-Si implant, a second trench structure including a gate oxide layer formed around a second trench with poly-Si implant, a p-base region formed between the first trench structure and the second trench structure, a plurality of n+ source region formed on the p-base region and between the first trench structure and the second trench structure, a dielectric layer formed on the first trench structure, the second trench structure, and the plurality of n+ source region. The frontside metal layer is formed on the semiconductor layer and filling gaps formed between the plurality of n+ source region on the p-base region.
摘要:
A power semiconductor device includes a backside metal layer, a substrate formed on the backside metal layer, a semiconductor layer formed on the substrate, and a frontside metal layer. The semiconductor layer includes a first trench structure including a gate oxide layer formed around a first trench with poly-Si implant, a second trench structure including a gate oxide layer formed around a second trench with poly-Si implant, a p-base region formed between the first trench structure and the second trench structure, a plurality of n+ source region formed on the p-base region and between the first trench structure and the second trench structure, a dielectric layer formed on the first trench structure, the second trench structure, and the plurality of n+ source region. The frontside metal layer is formed on the semiconductor layer and filling gaps formed between the plurality of n+ source region on the p-base region.
摘要:
A method of forming a power device includes providing a substrate, a semiconductor layer having at least a trench and being disposed on the substrate, a gate insulating layer covering the semiconductor layer, and a conductive material disposed in the trench, performing an ion implantation process to from a body layer, performing a tilted ion implantation process to from a heavy doped region, forming a first dielectric layer overall, performing a chemical mechanical polishing process until the body layer disposed under the heavy doped region is exposed to form source regions on the opposite sides of the trench, and forming a source trace directly covering the source regions disposed on the opposite sides of the trench.
摘要:
A method of forming a power device includes providing a substrate, a semiconductor layer having at least a trench and being disposed on the substrate, a gate insulating layer covering the semiconductor layer, and a conductive material disposed in the trench, performing an ion implantation process to from a body layer, performing a tilted ion implantation process to from a heavy doped region, forming a first dielectric layer overall, performing a chemical mechanical polishing process until the body layer disposed under the heavy doped region is exposed to form source regions on the opposite sides of the trench, and forming a source trace directly covering the source regions disposed on the opposite sides of the trench.
摘要:
A semiconductor device having integrated MOSFET and Schottky diode includes a substrate having a MOSFET region and a Schottky diode region defined thereon; a plurality of first trenches formed in the MOSFET region; and a plurality of second trenches formed in the Schottky diode region. The first trenches respectively including a first insulating layer formed over the sidewalls and bottom of the first trench and a first conductive layer filling the first trench serve as a trenched gate of the trench MOSFET. The second trenches respectively include a second insulating layer formed over the sidewalls and bottom of the second trench and a second conductive layer filling the second trench. A depth and a width of the second trenches are larger than that of the first trenches; and a thickness of the second insulating layer is larger than that of the first insulating layer.
摘要:
A semiconductor device having integrated MOSFET and Schottky diode includes a substrate having a MOSFET region and a Schottky diode region defined thereon; a plurality of first trenches formed in the MOSFET region; and a plurality of second trenches formed in the Schottky diode region. The first trenches respectively including a first insulating layer formed over the sidewalls and bottom of the first trench and a first conductive layer filling the first trench serve as a trenched gate of the trench MOSFET. The second trenches respectively include a second insulating layer formed over the sidewalls and bottom of the second trench and a second conductive layer filling the second trench. A depth and a width of the second trenches are larger than that of the first trenches; and a thickness of the second insulating layer is larger than that of the first insulating layer.
摘要:
An integrated structure of an IGBT and a diode includes a plurality of doped cathode regions, and a method of forming the same is provided. The doped cathode regions are stacked in a semiconductor substrate, overlapping and contacting with each other. As compared with other doped cathode regions, the higher a doped cathode region is disposed, the larger implantation area the doped cathode region has. The doped cathode regions and the semiconductor substrate have different conductive types, and are applied as a cathode of the diode and a collector of the IGBT. The stacked doped cathode regions can increase the thinness of the cathode, and prevent the wafer from being overly thinned and broken.
摘要:
An integrated structure of an IGBT and a diode includes a plurality of doped cathode regions, and a method of forming the same is provided. The doped cathode regions are stacked in a semiconductor substrate, overlapping and contacting with each other. As compared with other doped cathode regions, the higher a doped cathode region is disposed, the larger implantation area the doped cathode region has. The doped cathode regions and the semiconductor substrate have different conductive types, and are applied as a cathode of the diode and a collector of the IGBT. The stacked doped cathode regions can increase the thinness of the cathode, and prevent the wafer from being overly thinned and broken.
摘要:
A rehabilitation assisting apparatus has a main body, a waist assisting unit mounted above the main body, and two leg assisting units separately disposed side by side above the main body. Each of the leg assisting units is pivotally connected with the waist assisting unit. An upper rocking plate of the waist assisting unit can be driven to roll leftward and rightward to rehabilitate or train a waist of a user. A leg lifting bracket of each of the leg assisting unit can be driven to pitch upward and downward to rehabilitate or train a leg of the user.
摘要:
The present invention relates to a novel method for expanding mesenchymal stem cells (MSCs) in low-density and hypoxic condition as compared to normal air conditions traditionally used in cell culture. The present method provides rapid and efficient expansion of human MSCs without losing cellular proliferation and stem cell properties, including increase in proliferation, decrease in senescence, and increase in differentiation potential both in vitro and in vivo. The expanded MSCs by the present method may maintain normal karyotyping, and will not form tumor when transplanted into mammal.