摘要:
A display includes a backlight module having elongated lamps. At least a pair of the lamps has a first lamp and a second lamp that are electrically connected in series. The first lamp and the second lamp are spaced apart with at least a third lamp positioned between the first and second lamps.
摘要:
A display includes a backlight module having elongated lamps. At least a pair of the lamps has a first lamp and a second lamp that are electrically connected in series. The first lamp and the second lamp are spaced apart with at least a third lamp positioned between the first and second lamps.
摘要:
A light-emitting diode (LED) apparatus includes a thermoconductive substrate, a thermoconductive adhesive layer, an epitaxial layer, a current spreading layer and a micro- or nano-roughing structure. The thermoconductive adhesive layer is disposed on the thermoconductive substrate. The epitaxial layer is disposed opposite to the thermoconductive adhesive layer and has a first semiconductor layer, an active layer and a second semiconductor layer. The current spreading layer is disposed between the second semiconductor layer of the epitaxial layer and the thermoconductive adhesive layer. The micro- or nano-roughing structure is disposed on the first semiconductor layer of the epitaxial layer. In addition, a manufacturing method of the LED apparatus is also disclosed.
摘要:
A method of processing nature pattern on expitaxial substrate, unlike the conventional method of processing regular pattern on expitaxial substrate (such as sapphire substrate) by lithography, wet etches a sapphire substrate directly to obtain a nature pattern, so as to simplify the fabrication process. Compared with the conventional way of processing pattern sapphire, the nature pattern sapphire substrate produced by the method can avoid voids between the interface of sapphire and GaN and apply this technology to a wired bond LED structure to increase the sidewall light extraction and improve the texture of the sapphire surface of a flip chip LED structure. In addition, this method also can be applied to a thin-GaN LED for achieving the surface texture after the sapphire is removed by laser.
摘要:
A light-emitting diode (LED) apparatus includes a thermoconductive substrate, a thermoconductive adhesive layer, an epitaxial layer, a current spreading layer and a micro- or nano-roughing structure. The thermoconductive adhesive layer is disposed on the thermoconductive substrate. The epitaxial layer is disposed opposite to the thermoconductive adhesive layer and has a first semiconductor layer, an active layer and a second semiconductor layer. The current spreading layer is disposed between the second semiconductor layer of the epitaxial layer and the thermoconductive adhesive layer. The micro- or nano-roughing structure is disposed on the first semiconductor layer of the epitaxial layer. In addition, a manufacturing method of the LED apparatus is also disclosed.
摘要:
The present invention provides a method to fabricate a diode whose heat stability is improved. The diode has a layer of high reflective ohmic contact and an alloy metal is used in the layer. With the alloy metal used in the layer, the heat stability of the diode is improved.
摘要:
A multiple quantum well structure including a plurality of well-barrier pairs arranged along a direction is provided. Each of the well-barrier pairs includes a barrier layer and a well layer adjacent to the barrier layer. The barrier layers and the well layers of the well-barrier pairs are disposed alternately. A ratio of a thickness of the well layer in the direction to a thickness of the barrier layer in the direction in each well-barrier pair is a well-barrier thickness ratio, and the well-barrier thickness ratios of a part of the well-barrier pairs gradually increase along the direction.
摘要:
A light emitting diode device includes an epitaxial substrate, at least one passivation structure, at least one void, a semiconductor layer, a first type doping semiconductor layer, a light-emitting layer and a second type doping semiconductor layer. The passivation structure is disposed on the epitaxial substrate and has an outer surface. The void is located at the passivation structure and at least covering 50% of the outer surface of the passivation structure. The semiconductor layer is disposed on the epitaxial substrate and encapsulating the passivation structure and the void. The first type doping semiconductor layer is disposed on the semiconductor layer. The light-emitting layer is disposed on the first type doping semiconductor layer. The second type doping semiconductor layer is disposed on the light emitting layer.
摘要:
A battery condition estimating apparatus for a battery pack having a plurality of battery cells connected in series includes an analog channel switching circuit and a battery gas gauge circuit. The analog channel switching circuit has a plurality of input ports and an output port, wherein the input ports are coupled to the battery cells via a plurality of analog channels, respectively, and the analog channel switching circuit is arranged to couple the output port to a selected input port of the input ports for allowing the output port N5 to be coupled to a selected battery via a selected analog channel. The battery gas gauge circuit is coupled to the output port of the analog channel switching circuit, and used for estimating a battery condition of the battery pack by monitoring the selected battery cell via the selected analog channel.
摘要:
A structure applying an optical wave guide layer includes an incident light source and at least one optical wave guide layer. The structure can be in any geometric shape such as a planar, hemispherical or conical shape. The geometric structure is designed for collecting and guiding the incident light source in specific directions. The light can be guided by a combination of materials having different optical properties. The incident angle of the collected light is controlled and the materials are selected to effectively overcome a drawback of the prior art that a portion of the light of some optical components cannot be extracted by a light extraction method.