摘要:
A filter for compensating discrete secondary pulse formations associated with a data stream of discrete main pulses produced from data read from magnetic media. The filter's impulse response comprises a center coefficient with side compensating coefficients for attenuating the secondary pulses when the input signal is convolved with the impulse response. The magnitude and delay of the compensation coefficients are programmable and are adaptively adjusted to optimize the impulse response for a given environment. In a traditional FIR embodiment, two delay lines are used to generate the two programmable delays between the center coefficient and side compensation coefficients. In the preferred embodiment, an IIR filter provides the two programmable delays using only one delay line thereby reducing the size and cost of the circuit. Also in the preferred embodiment, the data stream is interleaved into an even and odd data stream and processed in parallel by two filters in order to double the throughput. Further, the pre-cursor correcting portion of the filter can be disabled in order to avoid delaying the data stream while still canceling the post-cursor secondary pulses. The filter also comprises attenuation and adder means to match the coincident sample values in amplitude and add them to substantially eliminate the effect of the secondary pulses in the discrete data stream.
摘要:
A sampled amplitude read channel is disclosed for reading data recorded on a disk storage medium by detecting an estimated binary sequence from a sequence of discrete time sample values generated by sampling pulses in an analog read signal from a read head positioned over the disk storage medium. The read channel comprises a sampling device, such as an analog-to-digital converter (A/D), for sampling the analog read signal to generate the discrete time sample values and for sampling at least one other auxillary analog input signal, such as a servo control signal. In this manner, performance characteristics of the read channel can be measured, such as the driving current applied to the servo control voice coil motor (VCM), without requiring additional hardware.
摘要:
A sampled amplitude read channel incorporated within a magnetic disk storage system for reading data recorded tracks on a magnetic medium, where the data comprises user data sectors recorded at varying data rates across a plurality of predefined zones and embedded servo data sectors recorded at the same data rate across the zones. The read channel comprises a timing recovery component for synchronous sampling of a read signal from a magnetic read head positioned over the magnetic medium, a gain control component for adjusting the amplitude of the read signal, and a DC offset component for canceling a DC offset in the read signal. These components are dynamically configured to operate according to whether the read channel is processing user data or embedded servo data.
摘要:
A disk storage system is disclosed wherein user data received from a host system is first encoded according to a first channel code having a high code rate, and then encoded according to an ECC code, such as a Reed-Solomon code, wherein the ECC redundancy symbols are encoded according to a second channel code having low error propagation. In the preferred embodiment, the first channel code is a RLL (d,k) code having a long k constraint which allows for longer block lengths (and higher code rates). During read back, a synchronous read channel samples the analog read signal a synchronously and interpolates the asynchronous sample values to generate sample values substantially synchronized to the baud rate. In contrast to conventional synchronous-sampling timing recovery, interpolated timing recovery can tolerate a longer RLL k constraint because it is less sensitive to noise in the read signal and not affected by process variations in fabrication. Additionally, a trellis sequence detector detects an estimated binary sequence from the synchronous sample values, wherein a state transition diagram of the trellis detector is configured according to the code constraints of the first and second channel codes. The estimated binary sequence output by the sequence detector is buffered in a data buffer to facilitate the error detection and correction process, and to allow for retroactive and split-segment symbol synchronization using multiple sync marks.
摘要:
A sampled amplitude read channel incorporated within a magnetic disk storage system for reading data recorded in concentric tracks on a magnetic medium, where the data comprises user data sectors recorded at varying data rates across a plurality of predefined zones and embedded servo data sectors recorded at the same data rate across the zones. The sampled amplitude read channel comprises a timing recovery component for synchronous sampling of a read signal from a magnetic read head positioned over the magnetic medium, a gain control component for adjusting the amplitude of the read signal, and a DC offset component for cancelling a DC offset in the read signal. These components are dynamically configured to operate according to whether the read channel is processing user data or embedded servo data. A user data frequency synthesizer and a servo data frequency synthesizer lock the timing recovery component to a reference frequency and provide a coarse center frequency control signal corresponding to the user data or servo data mode. The read channel further employs pipelined reads to reduce the physical gap between sectors on the medium. In addition, an improved sync mark detector and an improved asynchronous servo address mark detector increase the accuracy and reliability of the read channel.
摘要:
A sampled amplitude read channel for magnetic disk recording which asynchronously samples the analog read signal, adaptively equalizes the resulting discrete time sample values according to a target partial response, extracts synchronous sample values through interpolated timing recovery, and detects digital data from the synchronous sample values using a Viterbi sequence detector is disclosed. To minimize interference from the timing and gain control loops, the phase and magnitude response of the adaptive equalizer filter are constrained at a predetermined frequency using an optimal orthogonal projection operation as a modification to a least mean square (LMS) adaptation algorithm. Further, with interpolated timing recovery, the equalizer filter and its associated latency are removed from the timing recovery loop, thereby allowing a higher order discrete time filter and a lower order analog filter.
摘要:
In a computer disk storage system for recording binary data, a sampled amplitude read channel comprises a sampling device for asynchronously sampling pulses in an analog read signal from a read head positioned over a disk storage medium, interpolated timing recovery for generating synchronous sample values, and a sequence detector for detecting the binary data from the synchronous sample values. The sequence detector comprises a demodulator for detecting a preliminary binary sequence which may contain bit errors, a remodulator for remodulating to estimated sample values, a means for generating sample error values, an error pattern detector for detecting the bit errors, an error detection validator, and an error corrector for correcting the bit errors. The remodulator comprises a partial erasure circuit which compensates for the non-linear reduction in amplitude of a primary pulse caused by secondary pulses located near the primary pulse. The error pattern detector comprises a peak error pattern detector and, if an error pattern is detected, a means for disabling the error pattern detector until the detected error pattern has been fully processed. The error detection validator checks the validity of a detected error event and, if valid, enables operation of the error corrector.
摘要:
A sampled amplitude read channel for magnetic disk recording which asynchronously samples the analog read signal, adaptively equalizes the resulting discrete time sample values according to a target partial response, extracts synchronous sample values through interpolated timing recovery, and detects digital data from the synchronous sample values using a Viterbi sequence detector is disclosed. To minimize interference from the timing and gain control loops, the phase and magnitude response of the adaptive equalizer filter are constrained at a predetermined frequency using an optimal orthogonal projection operation as a modification to a least mean square (LMS) adaptation algorithm. Further, with interpolated timing recovery, the equalizer filter and its associated latency are removed from the timing recovery loop, thereby allowing a higher order discrete time filter and a lower order analog filter.
摘要:
A sampled amplitude read channel for magnetic disk recording which asynchronously samples the analog read signal, adaptively equalizes the resulting discrete time sample values according to a target partial response, extracts synchronous sample values through interpolated timing recovery, and detects digital data from the synchronous sample values using a Viterbi sequence detector is disclosed. To minimize interference from the timing and gain control loops, the phase and magnitude response of the adaptive equalizer filter are constrained at a predetermined frequency using an optimal orthogonal projection operation as a modification to a least mean square (LMS) adaptation algorithm. Further, with interpolated timing recovery, the equalizer filter and its associated latency are removed from the timing recovery loop, thereby allowing a higher order discrete time filter and a lower order analog filter.
摘要:
An improved timing recovery phase-locked loop in a partial response recording channel comprising a means for generating a frequency error and a means for generating a phase error represented by a timing gradient. The frequency error is not affected by a DC offset in the input reference signal and is less susciptible to noise due to an increase in sensitivity. A state machine for generating expected samples is used to generate the timing gradient, rather than estimated signal samples, which results in a shorter acquisition preamble. When tracking arbitrary user data, the timing gradient is smoothed to reduce variations in the gain of the loop.