摘要:
A heat shield for use in a crystal puller around a monocrystalline ingot grown out of a crucible in the crystal puller filled with molten semiconductor source material. The heat shield includes a reflector having a central opening sized and shaped for surrounding the ingot as the ingot is grown to reduce heat transfer from the crucible. The reflector is adapted to be supported in the crystal puller between the molten material and a camera aimed toward at three separate points on a meniscus formed between the ingot and an upper surface of the molten material. The reflector has at least three passages extending through the reflector. Each of the passages is located along an imaginary line extending between the camera and one of the points on the meniscus. This permits the camera to view the points so the positions of the points can be determined by the camera for calculating the diameter of the ingot while minimizing heat loss through the passages.
摘要:
A heat shield for use in a crystal puller around a monocrystalline ingot grown out of a crucible in the crystal puller filled with molten semiconductor source material. The heat shield includes a reflector having a central opening sized and shaped for surrounding the ingot as the ingot is grown to reduce heat transfer from the crucible. The reflector is adapted to be supported in the crystal puller between the molten material and a camera aimed toward at three separate points on a meniscus formed between the ingot and an upper surface of the molten material. The reflector has at least three passages extending through the reflector. Each of the passages is located along an imaginary line extending between the camera and one of the points on the meniscus. This permits the camera to view the points so the positions of the points can be determined by the camera for calculating the diameter of the ingot while minimizing heat loss through the passages.
摘要:
A heat shield assembly is used in a Czochralski crystal puller for selectively shielding a monocrystalline ingot of semiconductor material to control the type and number density of agglomerated defects in the crystal structure of the ingot. The heat shield assembly has an upper heat shield connected to a lower heat shield. The upper and lower heat shields are connected to each other and slidingly connected to an intermediate heat shield. The lower heat shield is able to telescope up into the intermediate heat shield to minimize the profile of the heat shield assembly located within a crystal growth chamber of the crystal puller. However when needed to control formation of the monocrystalline ingot, the lower heat shield may be extended from the intermediate heat shield and project downwardly into the crystal puller crucible in close proximity to an upper surface of molten semiconductor source material in the crucible. A method employing the heat shield assembly is also disclosed.
摘要:
A doped silicon single crystal having a resistivity variation along a longitudinal and/or radial axis of less than 10% and a method of preparing one or a sequential series of doped silicon crystals is disclosed. The method includes providing a melt material comprising silicon into a continuous Czochralski crystal growth apparatus, delivering a dopant, such as gallium, indium, or aluminum, to the melt material, providing a seed crystal into the melt material when the melt material is in molten form, and growing a doped silicon single crystal by withdrawing the seed crystal from the melt material. Additional melt material is provided to the apparatus during the growing step. A doping model for calculating the amount of dopant to be delivered into the melt material during one or more doping events, methods for delivering the dopant, and vessels and containers used to deliver the dopant are also disclosed.
摘要:
A pendulum gate valve including an expandable gate which pivots when unexpanded to selectively block a vacuum or other pressure-differential passage. The valve includes a valve plate sealing one side of the passage and a ring abutting an opposed side of the passage when the gate member is expanded. A compression spring biases apart the valve plate and ring to close the valve by means of respective two-stage hangers attached thereto, extending along the spring, and having distal ends capturing the spring. Pneumatic pressure applied to a pneumatic cavity formed between the middles of the two-stage hangers and accommodating the spring forces apart the valve plate and ring to open the valve in the blocking position. Thereby if pressure fails, the valve fails to a sealed state. The axially movable valve plate is advantageously water cooled to allow use with a heated processing chamber.
摘要:
An electrical resistance heater for use in a crystal puller used for growing monocrystalline silicon ingots according to the Czochralski method comprises a heating element sized and shaped for placement in a housing of the crystal puller generally above a crucible in spaced relationship with the outer surface of the growing ingot for radiating heat to the ingot as it is pulled upward in the housing relative to the molten silicon. The heating element has an upper end and a lower end. The lower end of the heating element is disposed substantially closer to the molten silicon than the upper end when the heating element is placed in the housing. The heating element is constructed such that the heating power output generated by the heating element gradually increases from the lower end to the upper end of the heating element.
摘要:
A Czochralski growth system is disclosed comprising a crucible, a silicon delivery system comprising a feeder having a delivery point overhanging the crucible and delivering a controllable amount of silicon into the crucible, and at least one doping mechanism controllably delivering at least one dopant material to the feeder. The system can comprise two or more doping mechanisms each loaded with a different dopant material and can therefore be used to prepare silicon ingots having multiple dopants. The resulting ingots have substantially constant dopant concentrations along their axes. Also disclosed is a method of Czochralski growth of at least one silicon ingot comprising at least one dopant material, which is preferably a continuous Czochralski method.
摘要:
A Czochralski growth system comprising a growth chamber, an isolation valve, a feed chamber containing feedstock, and a feeder is described. The isolation valve is disposed in at least one side wall of the growth chamber, and the feed chamber is vacuum sealed to the growth chamber through the isolation valve. The feeder is insertable into the growth chamber through the isolation valve and supplies the feedstock into the growth chamber. Preferably this system can be used for producing silicon ingots using a continuous Czochralski method.
摘要:
A solid material delivery system for a furnace which melts the solid material has a delivery tube located at least partially within the furnace which is mounted by a rotor assembly for selective radial positioning in the furnace over a crucible in the furnace. The rotor assembly is constructed to compensate for thermal expansion and contraction caused by the furnace so that free movement of the delivery tube is achieved at all operating temperatures. The rotor assembly is also constructed to prevent jamming caused by particulate solid material in the rotor assembly. The delivery tube is formed so that flowable solid material will flow in a controlled fashion but without clogging to an outlet. The delivery tube and outlet are shaped to drop the material in a substantially columnar stream into the crucible.
摘要:
A pendulum gate valve including an expandable gate which pivots when unexpanded to selectively block a vacuum or other pressure-differential passage. The valve includes a valve plate sealing one side of the passage and a ring or barrier plate abutting an opposed side of the passage when the gate member is expanded. A compression spring biases apart the valve plate and ring to close the valve by means of respective two-stage hangers attached thereto, extending along the spring, and having distal ends capturing the spring. Pneumatic pressure applied to a pneumatic cavity formed between the middles of the two-stage hangers and accommodating the spring forces apart the valve plate and ring to open the valve in the blocking position. Thereby if pressure fails, the valve fails to a sealed state. The axially movable valve or barrier plate is advantageously water cooled to allow use with a heated processing chamber.