Abstract:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device includes a substrate; first and second light emitting cells, each including a first semiconductor layer, an active layer, and a second semiconductor layer; and a connector located between the first and second light emitting cells and the substrate, to electrically connect the first and second light emitting cells to each other. The connector extends from the second semiconductor layer of the first light emitting cell, across the substrate, and through central regions of the second semiconductor layer and active layer of the second light emitting cells, to contact the first semiconductor layer of the second light emitting cell.
Abstract:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device includes a substrate; first and second light emitting cells, each including a first semiconductor layer, an active layer, and a second semiconductor layer; and a connector located between the first and second light emitting cells and the substrate, to electrically connect the first and second light emitting cells to each other. The connector extends from the second semiconductor layer of the first light emitting cell, across the substrate, and through central regions of the second semiconductor layer and active layer of the second light emitting cells, to contact the first semiconductor layer of the second light emitting cell.
Abstract:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device includes a substrate; first and second light emitting cells, each including a first semiconductor layer, an active layer, and a second semiconductor layer; and a connector located between the first and second light emitting cells and the substrate, to electrically connect the first and second light emitting cells to each other. The connector extends from the second semiconductor layer of the first light emitting cell, across the substrate, and through central regions of the second semiconductor layer and active layer of the second light emitting cells, to contact the first semiconductor layer of the second light emitting cell.
Abstract:
Exemplary embodiments of the present invention relate to a including a substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad arranged on the second conductive type semiconductor layer, an insulation layer disposed between the second conductive type semiconductor layer and the second electrode pad, and at least one upper extension electrically connected to the second electrode pad, the at least one upper extension being electrically connected to the second conductive type semiconductor layer.
Abstract:
An exemplary embodiment of the present invention discloses a light emitting diode including a substrate having a first edge and a second edge opposite to each other, a light emitting structure disposed on the substrate, the light emitting structure including a first semiconductor layer and a second semiconductor layer, a plurality of first electrode pads arranged on an upper surface of the first semiconductor layer, the first electrode pads arranged in a vicinity of the first edge, a plurality of second electrode pads arranged on the second semiconductor layer, the second electrode pads arranged in a vicinity of the second edge, a plurality of first extensions, each first extension extending from a first electrode pad, and a plurality of second extensions, each second extension extending from a second electrode pad. The first extensions include intrusion parts extending in a direction from the first edge to the second edge, wherein the intrusion parts are spaced apart from each other and not connecting with the second electrode pads. Further, the second extensions include intrusion parts extending in a direction from the second edge to the first edge, wherein the first extension intrusion parts each extend into a region between two of the second extension intrusion parts.
Abstract:
Disclosed are a light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same. This method comprises preparing a first substrate of sapphire or silicon carbide having an upper surface with an r-plane, an a-plane or an m-plane. The first substrate has stripe-shaped anti-growth patterns on the upper surface thereof, and recess regions having sidewalls of a c-plane between the anti-growth patterns. Nitride semiconductor layers are grown on the substrate having the recess regions, and the nitride semiconductor layers are patterned to form the light emitting cells separated from one another. Accordingly, there is provided a light emitting device having non-polar light emitting cells with excellent crystal quality.
Abstract:
Disclosed are a light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same. This method comprises preparing a first substrate of sapphire or silicon carbide having an upper surface with an r-plane, an a-plane or an m-plane. The first substrate has stripe-shaped anti-growth patterns on the upper surface thereof, and recess regions having sidewalls of a c-plane between the anti-growth patterns. Nitride semiconductor layers are grown on the substrate having the recess regions, and the nitride semiconductor layers are patterned to form the light emitting cells separated from one another. Accordingly, there is provided a light emitting device having non-polar light emitting cells with excellent crystal quality.
Abstract:
The present invention discloses an alternating current (AC) light emitting diode (LED) having half-wave light emitting cells and full-wave light emitting cells. The AC LED has a plurality of light emitting cells electrically connected between bonding pads on a single substrate. The AC LED includes a first row of half-wave light emitting cells each having an anode terminal and a cathode terminal, a second row of full-wave light emitting cells each having an anode terminal and a cathode terminal, and a third row of half-wave light emitting cells each having an anode terminal and a cathode terminal. In the AC LED, the second row is arranged between the first row and the third row, and the third row includes a pair of light emitting cells that share a cathode terminal with each other. The cathode terminal shared by the pair of light emitting cells in the third row is electrically connected to the anode terminal of a corresponding light emitting cell of the half-wave light emitting cells in the first row through a conductor that is electrically insulated from the full-wave light emitting cells in the second row.
Abstract translation:本发明公开了一种具有半波发光单元和全波发光单元的交流(AC)发光二极管(LED)。 AC LED具有电连接在单个基板上的焊盘之间的多个发光单元。 AC LED包括具有阳极端子和阴极端子的第一排半波发光单元,具有阳极端子和阴极端子的第二排全波发光单元,以及第三排半波发光单元 每个具有阳极端子和阴极端子的发光单元。 在AC LED中,第二行布置在第一行和第三行之间,第三行包括彼此共享阴极端子的一对发光单元。 由第三行中的一对发光单元共享的阴极端子通过与整体电绝缘的导体电连接到第一行中的半波发光单元的对应的发光单元的阳极端子 - 第二排发光单元。
Abstract:
Disclosed herein is a light emitting diode. The light emitting diode includes a support substrate, semiconductor layers formed on the support substrate, and a metal pattern located between the support substrate and the lower semiconductor layer. The semiconductor layers include an upper semiconductor layer of a first conductive type, an active layer, and a lower semiconductor layer of a second conductive type. The semiconductor layers are grown on a sacrificial substrate and the support substrate is homogeneous with the sacrificial substrate.
Abstract:
Exemplary embodiments of the present invention relate to a including a substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad arranged on the second conductive type semiconductor layer, an insulation layer disposed between the second conductive type semiconductor layer and the second electrode pad, and at least one upper extension electrically connected to the second electrode pad, the at least one upper extension being electrically connected to the second conductive type semiconductor layer.