摘要:
Combinatorial synthesis methods obtain a plurality of compositions having materially different characteristics using an apparatus having a plurality of collectors. A first quantity of fluid reactants are reacted to form a first quantity of product composition. Following completion of the collection of the first quantity of product composition, a second quantity of fluid reactants are reacted to form a second quantity of product composition, the second quantity of product composition being material different from the first quantity of product composition. An apparatus includes a nozzle connected to a reactant source and a plurality of collectors. The nozzle and plurality of collectors move relative to each other such that a collector can be selectively placed to receive a fluid stream emanating from the nozzle. The plurality of product compositions can be evaluated to determine their suitability for various applications.
摘要:
Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
摘要:
Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
摘要:
Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
摘要:
Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
摘要:
Improvements to chemical reaction systems provide for the production of commercial quantities of chemical products, such as chemical powders. The improved chemical reaction systems can accommodate a large reactant flux for the production of significant amounts of product. Preferred reaction systems are based on laser pyrolysis. Features of the system provide for the production of highly uniform product particles.
摘要:
Improved reaction chamber designs are described that provide for improved control over the flow within the reaction chamber. The reaction chambers contain reactions for particle production from a flowing reactant stream. Improved reactant delivery nozzles are described that are useful for the delivery of gas/vapor reactants and/or aerosol reactants. Improved nozzle designs can result in more uniform reactant flow. Suitable reactors can comprise an electromagnetic radiation source that projects through the reactor to drive the reaction at an electromagnetic radiation reaction zone. The improved nozzle features are suitable for reactors for particle collection and/or for coating of substrates within the reaction chamber.
摘要:
A fluid ejection assembly includes a fluid slot formed in a die. The assembly also includes a nozzle column is formed along a side of the fluid slot. The assembly also includes a pair of thermal sensors to measure die temperature at the middle of the nozzle column and at a first end of the nozzle column.
摘要:
A soft symbol decoder for use in a multiple input multiple output (MIMO) and OFDM (orthogonal frequency division multiplexing) system. The decoder generates soft symbol values for a digital signal that represents a number of source bits. The source bits are transmitted as symbols in corresponding to points in a signaling constellation. Soft metrics are determined by searching for all possible multi-dimensional symbols that could have been transmitted. The method includes transmitting a sample of the multi-dimensional symbol using K transmit antennas. The multi-dimensional symbol is represent-able as a complex, K-dimensional vector x. Each vector component of vector x represents a signal transmitted with one of the K transmit antennas. After transmission through a communication channel, a sample corresponding to the transmitted sample is received. The received sample is represented by a complex, N-dimensional vector y, where N is the number of receive antennas in the MIMO system. After the sample is received, a soft metric L(bi) is determined for each bit bi encoded by x according to the equation: L ( b i ) = σ - 2 · ( min x j ❘ b i = - 1 y - Hx j 2 - min x j ❘ b i = + 1 y - Hx j 2 ) , , and xj represents all possible values for x. In addition, a reduced complexity method is used for providing soft metric values in the MIMO system. This exemplary aspect reduces the complexity of the above computations from 2BK to 2B(K−1), where B is the number of bits transmitted per symbol per antenna.
摘要翻译:一种用于多输入多输出(MIMO)和OFDM(正交频分复用)系统的软符号解码器。 解码器产生表示多个源位的数字信号的软符号值。 源比特在对应于信令星座中的点被作为符号发送。 通过搜索可能已经发送的所有可能的多维符号来确定软度量。 该方法包括使用K个发送天线发送多维符号的采样。 多维符号可以表示为复杂的K维向量x。 矢量x的每个矢量分量表示与K个发射天线中的一个发射的信号。 在通过通信信道传输之后,接收对应于发送的样本的样本。 接收的样本由复数N维向量y表示,其中N是MIMO系统中的接收天线的数量。 在接收到样本之后,根据以下等式为由x编码的每个比特bi确定软度量L(bi):L(bi)= sigma-2·(min xj | bi =-Iy-Hx j2 - min xj | bi = +1y - Hx j2),xj表示x的所有可能值。 另外,降低复杂度的方法用于在MIMO系统中提供软度量值。 该示例性方面降低了从2BK到2B(K-1)的上述计算的复杂度,其中B是每个天线每符号发送的比特数。
摘要:
A cache device is disposed on a connection path between a user computer executing a software application and a network. The application exchanges data with a further computer via the network. The cache device includes a cache memory and a processor. The cache device is configured to measure, by the processor, a first latency between the user computer and the further computer. The cache device is further configured to determine an acceptable latency range based on the latency and a requirement of the software application. The cache device is further configured to measure a second latency between the user computer and the further computer. The cache device is further configured to store, in the cache memory, a set of data transmitted from the user computer to the further computer, if the second latency is not within the acceptable latency range.