Abstract:
A non-volatile memory chip package is prepared for surface mounting to a substrate in a solder reflow process by programming erased blocks to higher threshold voltage levels, to improve data retention for blocks which are preloaded with content, such as by an electronic device manufacturer. Following the surface mounting, the previously-erased blocks are returned to the erased state. The threshold voltage of storage elements of the preloaded blocks can change during the surface mounting process due to a global charge effect phenomenon. The effect is most prominent for higher state storage elements which are surrounded by erased blocks, in a chip for which the wafer backside was thinned and polished. The erased blocks can be programmed using a single program pulse without performing a verify operation, as a wide threshold voltage distribution is acceptable.
Abstract:
Mobile ion diffusion causes a shift in the threshold voltage of non-volatile storage elements in a memory chip, such as during an assembly process of the memory chip. To reduce or avoid such shifts, a coating can be applied to a printed circuit board substrate or a leader frame to which the memory chip is surface mounted. An acrylic resin coating having a thickness of about 10 μm may be used. A memory chip is attached to the coating using an adhesive film. Stacked chips may be used as well. Another approach provides metal barrier traces over copper traces of the printed circuit board, within a solder mask layer. The metal barrier traces are fabricated in the same pattern as the copper traces but are wider so that they at least partially envelop and surround the copper traces. Corresponding apparatuses and fabrication processes are provided.
Abstract:
Mobile ion diffusion causes a shift in the threshold voltage of non-volatile storage elements in a memory chip, such as during an assembly process of the memory chip. To reduce or avoid such shifts, a coating can be applied to a printed circuit board substrate or a leader frame to which the memory chip is surface mounted. An acrylic resin coating having a thickness of about 10 μm may be used. A memory chip is attached to the coating using an adhesive film. Stacked chips may be used as well. Another approach provides metal barrier traces over copper traces of the printed circuit board, within a solder mask layer. The metal barrier traces are fabricated in the same pattern as the copper traces but are wider so that they at least partially envelop and surround the copper traces. Corresponding apparatuses and fabrication processes are provided.
Abstract:
A non-volatile memory chip package is prepared for surface mounting to a substrate in a solder reflow process by programming erased blocks to higher threshold voltage levels, to improve data retention for blocks which are preloaded with content, such as by an electronic device manufacturer. Following the surface mounting, the previously-erased blocks are returned to the erased state. The threshold voltage of storage elements of the preloaded blocks can change during the surface mounting process due to a global charge effect phenomenon. The effect is most prominent for higher state storage elements which are surrounded by erased blocks, in a chip for which the wafer backside was thinned and polished. The erased blocks can be programmed using a single program pulse without performing a verify operation, as a wide threshold voltage distribution is acceptable.
Abstract:
A method of making a two terminal nonvolatile memory cell includes forming a first electrode, forming a charge storage medium, forming a resistive element, and forming a second electrode. The charge storage medium and the resistive element are connected in parallel between the first and the second electrodes, and a presence or absence of charge being stored in the charge storage medium affects a resistivity of the resistive element.
Abstract:
A method of making a two terminal nonvolatile memory cell includes forming a first electrode, forming a charge storage medium, forming a resistive element, and forming a second electrode. The charge storage medium and the resistive element are connected in parallel between the first and the second electrodes, and a presence or absence of charge being stored in the charge storage medium affects a resistivity of the resistive element.
Abstract:
A two terminal nonvolatile memory cell includes a first electrode, a second electrode, a charge storage medium, and a resistive element. The charge storage medium and the resistive element are connected in parallel between the first and the second electrodes. A presence or absence of charge being stored in the charge storage medium affects a resistivity of the resistive element.
Abstract:
Spare disk drive management in a storage system. The storage system comprises disk drives and spare disk drives. Spare disk drives are initially kept in power-off state. The storage system detects the failure of a disk drive and selects a spare disk drive to replace the failed disk drive. The spare disk drive is selected on the basis of spare selection criteria. The selected spare disk drive is powered-on and replaces the failed disk drive. Data on the failed disk drive can be reconstructed on the spare disk drive by using RAID parity techniques.
Abstract:
A three dimensional stencil for use in applying raised acrylic designs to nails comprises a generally flat, flexible portion adapted for contact with a portion of a fingernail or toenail, and a cut-out portion formed within the confines of the flexible portion. The cut-out portion includes walls having a thickness of at least about 3 mm. The flexible portion forms an opening adjacent to the cut-out portion. In one embodiment, the flexible portion is itself of a thickness of at least about 3 mm, and the cut-out portion forms an opening in the flexible portion. In another embodiment, the cut-out portion comprises walls attached to and extending up from the flexible portion. In the second embodiment, tabs connecting the cut-out portion walls to the flexible portion may be used.
Abstract:
A delivery system for stabilizing a catheter shaft across an aortic arch can include one or more stabilizing members configured to fix or stabilize the position of the catheter relative to the aortic arch of a patient.