摘要:
In one embodiment, a method for depositing a tungsten material on a substrate within a process chamber is provided which includes exposing the substrate to a gaseous mixture containing a tungsten precursor and a reducing gas to deposit a tungsten nucleation layer on the substrate during a tungsten deposition process. The process further includes removing reaction by-products generated during the tungsten deposition process from the process chamber, exposing the substrate to the reducing gas to react with residual tungsten precursor within the process chamber during a soak process, removing reaction by-products generated during the soak process from the process chamber, and repeating the tungsten deposition process and the soak process during a cyclic deposition process. In the examples, the reducing gas may contain diborane or silane.
摘要:
A method of forming a tungsten nucleation layer using a sequential deposition process. The tungsten nucleation layer is formed by reacting pulses of a tungsten-containing precursor and a reducing gas in a process chamber to deposit tungsten on the substrate. Thereafter, reaction by-products generated from the tungsten deposition are removed from the process chamber. After the reaction by-products are removed from the process chamber, a flow of the reducing gas is provided to the process chamber to react with residual tungsten-containing precursor remaining therein. Such a deposition process forms tungsten nucleation layers having good step coverage. The sequential deposition process of reacting pulses of the tungsten-containing precursor and the reducing gas, removing reaction by-products, and than providing a flow of the reducing gas to the process chamber may be repeated until a desired thickness for the tungsten nucleation layer is formed.
摘要:
In one embodiment, a method for depositing a tungsten material on a substrate within a process chamber is provided which includes exposing the substrate to a gaseous mixture containing a tungsten precursor and a reducing gas to deposit a tungsten nucleation layer on the substrate during a tungsten deposition process. The process further includes removing reaction by-products generated during the tungsten deposition process from the process chamber, exposing the substrate to the reducing gas to react with residual tungsten precursor within the process chamber during a soak process, removing reaction by-products generated during the soak process from the process chamber, and repeating the tungsten deposition process and the soak process during a cyclic deposition process. In the examples, the reducing gas may contain diborane or silane.
摘要:
In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
摘要:
A method and system to form a refractory metal layer on a substrate features nucleating a substrate using sequential deposition techniques in which the substrate is serially exposed to first and second reactive gases followed by forming a layer, employing vapor deposition, to subject the nucleation layer to a bulk deposition of a compound contained in one of the first and second reactive gases.
摘要:
In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
摘要:
In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten nucleation layer by sequentially exposing a substrate to a boron-containing gas and a tungsten-containing gas within a processing chamber during an atomic layer deposition process, and forming a tungsten bulk layer on the tungsten nucleation layer by exposing the substrate to a processing gas that contains the tungsten-containing gas and a reactive precursor gas within another processing chamber during a chemical vapor deposition process. In one example, the tungsten nucleation layer is deposited on a dielectric material, such as silicon oxide. In another example, the tungsten nucleation layer is deposited on a barrier material, such as titanium or titanium nitride. Other examples provide that the tungsten nucleation layer and the tungsten bulk layer are deposited in the same processing chamber.
摘要:
In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
摘要:
A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
摘要:
A method and apparatus for atomic layer deposition (ALD) is described. In one embodiment, an apparatus comprises a vacuum chamber body having a contiguous internal volume comprised of a first deposition region spaced-apart from a second deposition region, the chamber body having a feature operable to minimize intermixing of gases between the first and the second deposition regions, a first gas port formed in the chamber body and positioned to pulse gas preferentially to the first deposition region to enable a first deposition process to be performed in the first deposition region, and a second gas port formed in the chamber body and positioned to pulse gas preferentially to the second deposition region to enable a second deposition process to be performed in the second deposition region is provided.