摘要:
Disclosed is a wiring structure that attains excellent low-contact resistance even if eliminating a barrier metal layer that normally is disposed between a Cu alloy wiring film and a semiconductor layer, and wiring structure with excellent adhesion. The wiring structure is provided with a semiconductor layer, and a Cu alloy layer, on a substrate in this order from the substrate side. A laminated structure is included between the semiconductor layer, and the Cu alloy layer. The laminated structure is composed of a (N, C, F, O) layer which contains at least one element selected from among a group composed of nitrogen, carbon, fluorine, and oxygen, and a Cu—Si diffusion layer which includes Cu and Si, in this order from the substrate side. At least one element selected from among the group composed of nitrogen, carbon, fluorine, and oxygen that composes the (N, C, F, O) layer is bonded to Si in the semiconductor layer. The Cu alloy layer is a laminated structure containing a Cu—X alloy layer (a first layer) and a second layer.
摘要:
Disclosed is a wiring structure that attains excellent low-contact resistance even if eliminating a barrier metal layer that normally is disposed between a Cu alloy wiring film and a semiconductor layer, and wiring structure with excellent adhesion. The wiring structure is provided with a semiconductor layer, and a Cu alloy layer, on a substrate in this order from the substrate side. A laminated structure is included between the semiconductor layer, and the Cu alloy layer. The laminated structure is composed of a (N, C, F, O) layer which contains at least one element selected from among a group composed of nitrogen, carbon, fluorine, and oxygen, and a Cu—Si diffusion layer which includes Cu and Si, in this order from the substrate side. At least one element selected from among the group composed of nitrogen, carbon, fluorine, and oxygen that composes the (N, C, F, O) layer is bonded to Si in the semiconductor layer. The Cu alloy layer is a laminated structure containing a Cu—X alloy layer (a first layer) and a second layer.
摘要:
A display device is provided with a Cu alloy film having high adhesiveness to a transparent substrate and a low electrical resistivity. The Cu alloy film for the display device is directly brought into contact with the transparent substrate, and the Cu alloy film has the multilayer structure, which includes a first layer (Y) composed of a Cu alloy containing, in total, 2-20 atm % of at least one element selected from among a group composed of Zn, Ni, Ti, Al, Mg, Ca, W, Nb, and Mn, and a second layer (X) which is composed of pure Cu or substantially a Cu alloy having Cu as the main component and has an electrical resistivity lower than that of the first layer (Y). The first layer (Y) is brought into contact with the transparent substrate.
摘要:
A display device is provided with a Cu alloy film having high adhesiveness to a transparent substrate and a low electrical resistivity. The Cu alloy film for the display device is directly brought into contact with the transparent substrate, and the Cu alloy film has the multilayer structure, which includes a first layer (Y) composed of a Cu alloy containing, in total, 2-20 atm % of at least one element selected from among a group composed of Zn, Ni, Ti, Al, Mg, Ca, W, Nb, and Mn, and a second layer (X) which is composed of pure Cu or substantially a Cu alloy having Cu as the main component and has an electrical resistivity lower than that of the first layer (Y). The first layer (Y) is brought into contact with the transparent substrate.
摘要:
Disclosed is a Cu alloy film for a display device that has high adhesion to a glass substrate while maintaining a low electric resistance characteristic of Cu-based materials. The Cu alloy film is wiring in direct contact with a glass substrate on a board and contains 0.1 to 10.0 atomic % in total of one or more elements selected from the group consisting of Ti, Al, and Mg. Also disclosed is a display device comprising a thin-film transistor that comprises the Cu alloy film. In a preferred embodiment of the display device, the thin-film transistor has a bottom gate-type structure, and a gate electrode and scanning lines in the thin-film transistor comprise the Cu alloy film and are in direct contact with the glass substrate.
摘要:
An interconnection structure, containing a substrate and, in the following order from a side of the substrate: (I) a semiconductor layer; (II) a multilayer structure including (II-a) a first layer containing at least one type of an element selected from the group consisting of nitrogen, carbon and fluorine and (II-b) an Al—Si diffusion layer containing Al and Si; and (III) an Al film of pure Al or an Al alloy, wherein the at least one of element selected from the group consisting of nitrogen, carbon, and fluorine in the first layer is bonded with Si contained in the semiconductor layer.
摘要:
Provided is a direct contact technology by which a barrier metal layer between an Al alloy interconnection composed of pure Al or an Al alloy and a semiconductor layer can be eliminated and the Al alloy interconnection can be directly and surely connected to the semiconductor layer within a wide process margin. In an interconnection structure, the semiconductor layer, and the Al alloy film composed of the pure Al or the Al alloy are provided on the substrate in this order from the substrate side. A multilayer structure of an (N, C, F) layer containing at least one type of an element selected from among a group composed of nitrogen, carbon and fluorine, and an Al—Si diffusion layer containing Al and Si is included in this order from the substrate side, between the semiconductor layer and the Al alloy film. At least the one type of the element, i.e., nitrogen, carbon or fluorine contained in the (N, C, F) layer is bonded with Si contained in the semiconductor layer.
摘要:
A display device includes a first substrate, a gate line disposed on the first substrate and including a gate electrode, a gate insulating layer disposed on the gate line, a semiconductor layer disposed on the gate insulating layer, a data line disposed on the semiconductor layer and connected to a source electrode, a drain electrode disposed on the semiconductor layer and facing the source electrode and a passivation layer disposed on the data line, in which the semiconductor layer is formed of an oxide semiconductor including indium, tin, and zinc. The indium is present in an amount of about 5 atomic percent (at %) to about 50 at %, and a ratio of the zinc to the tin is about 1.38 to about 3.88.
摘要:
Provided is a direct contact technology by which a barrier metal layer between a Cu alloy wiring composed of pure Cu or a Cu alloy and a semiconductor layer can be eliminated, and the Cu alloy wiring can be directly and surely connected to the semiconductor layer within a wide process margin. The wiring structure is provided with the semiconductor layer and the Cu alloy film composed of pure Cu or the Cu alloy on a substrate in this order from the substrate side. A laminated structure is included between the semiconductor layer and the Cu alloy film. The laminated structure is composed of an (N, C, F) layer, which contains at least one element selected from among a group composed of nitrogen, carbon and fluorine, and a Cu—Si diffusion layer, which contains Cu and Si, in this order from the substrate side. Furthermore, at least the one element selected from among the group composed of nitrogen, carbon and fluorine is bonded to Si contained in the semiconductor layer.
摘要:
Provided is a direct contact technology by which a barrier metal layer between a Cu alloy wiring composed of pure Cu or a Cu alloy and a semiconductor layer can be eliminated, and the Cu alloy wiring can be directly and surely connected to the semiconductor layer within a wide process margin. The wiring structure is provided with the semiconductor layer and the Cu alloy film composed of pure Cu or the Cu alloy on a substrate in this order from the substrate side. A laminated structure is included between the semiconductor layer and the Cu alloy film. The laminated structure is composed of an (N, C, F) layer, which contains at least one element selected from among a group composed of nitrogen, carbon and fluorine, and a Cu—Si diffusion layer, which contains Cu and Si, in this order from the substrate side. Furthermore, at least the one element selected from among the group composed of nitrogen, carbon and fluorine is bonded to Si contained in the semiconductor layer.