Abstract:
A solid electrolytic capacitor is provided which comprises a capacitor element including a chip and an anode wire projecting from the chip, an anode lead electrically connected to the anode wire, a cathode lead electrically connected to the chip, and a resin package enclosing the capacitor element together with part of the anode and cathode leads. The resin package has a first end face from which the cathode lead projects out, and a second end face located adjacent to the anode lead. Each of the anode and cathode leads is bent outside the package toward the underside thereof. The resin package includes a larger width portion adjacent to the first end face and a smaller width portion adjacent to the second end face. The anode lead extends transversely of the anode wire and projects laterally from the smaller width portion.
Abstract:
An electronic component is provided which comprises a resin package for enclosing inside parts, and at least one lead terminal projecting out from the resin package to have a bonding end. The lead terminal is bent to provide an armpit-like portion between the lead terminal and the resin package for retaining a solder wire in a sandwiched state. At the time of mounting the electronic component to a circuit board, the solder wire be caused to melt at a soldering temperature for merging with solder fillets along the bonding end of the lead terminal.
Abstract:
A composite material (A) includes a porous sintered body (12) and an insulation film (2) which covers the porous sintered body (12). The porous sintered body (12) is made of a combination of a metal element (12a) which has a melting temperature not lower than 1600° C., and a nonmetal element (12b, 12c). The insulation film (2) includes the nonmetal element (12b, 12c) and N.
Abstract:
An anode lead (11) is embedded at one end thereof in a sintered body in a capacitor element (1), and is welded at the other end thereof to a first outside lead (2). A cathode (12) is electrically connected to a second outside lead (3). The capacitor element is covered with a resin, thereby forming a resin package (5). The tip end of the first outside lead, to which the other end of the anode lead 11 is welded, is configured in such a manner as to have a capacity greater than those of other portions of the first outside lead: namely, the tip end of the first outside lead is widened or thickened in such a manner as to increase the volume of the first outside lead per unit length. Thus, it is possible to provide a solid electrolytic capacitor having the structure in which inclination of the welded portion of the anode lead can be eliminated or the welding reliability of the anode lead can be enhanced without reducing the size of the sintered body in the capacitor element or increasing the size of the package.
Abstract:
A method and assembly are provided for mounting a solid electrolytic capacitor onto a printed circuit board including an anode pad and a cathode pad. The capacitor includes a capacitor element which has an anode and a cathode electrically separated by a dielectric substance. The cathode includes an outer cathode terminal layer formed over the element. The method includes the steps of removing a part of the cathode terminal layer to expose a flat anode terminal surface, attaching the element to the printed circuit board for bringing the cathode terminal layer into electrical connection with the cathode pad, electrically connecting the flat anode terminal surface to the anode pad via a metal wire, and enclosing the element in a resin member for protection.
Abstract:
A composite material (A) includes a porous sintered body (12) and an insulation film (2) which covers the porous sintered body (12). The porous sintered body (12) is made of a combination of a metal element (12a) which has a melting temperature not lower than 1600° C., and a nonmetal element (12b, 12c). The insulation film (2) includes the nonmetal element (12b, 12c) and N.
Abstract:
An electronic component is provided which comprises a resin package for enclosing inside parts, and at least one lead terminal projecting out from the resin package to have a bonding end. The lead terminal is bent to provide an armpit-like portion between the lead terminal and the resin package for retaining a solder wire in a sandwiched state. At the time of mounting the electronic component to a circuit board, the solder wire be caused to melt at a soldering temperature for merging with solder fillets along the bonding end of the lead terminal.
Abstract:
A solid electrolytic capacitor of the type having a built-in fuse is disclosed in which a connecting portion between the fuse and a capacitor element is made thin and securely formed to accommodate the capacitor element to be increased in capacitance without changing the outer size of a resin package. The solid electrolytic capacitor including a capacitor element, an internal anode lead extending from one surface of the capacitor element, other surfaces of the capacitor element serving as a cathode terminal wall, an external anode lead connected to the internal anode lead, an external cathode lead connected to the cathode terminal wall through a fuse, and a resin package encapsulating the capacitor element, the fuse and respective connecting portions of the external anode lead and the external cathode lead. A connecting portion between the fuse and one end of the external cathode lead lies adjacent the capacitor element and in or out of a plane coplanar with the surface of the cathode terminal wall to which the fuse is pressure-welded.
Abstract:
An encapsulated solid electrolytic capacitor has an anode lead terminal, a cathode lead terminal, a capacitor element and a mold which is made of a synthetic resin material and encapsulates the capacitor element entirely. The capacitor element has an anode bar protruding longitudinally from a main body and is disposed between the anode lead terminal and the cathode lead terminal with the main body being electrically connected to the cathode lead terminal. The tip of the anode bar is welded to the anode lead terminal. The anode lead terminal has integrally formed with it a raised part which is L-shaped as seen longitudinally and is capable of having the anode bar inserted under its middle part, preventing it from becoming bent when it is soldered.
Abstract:
A surface mounting type polar electronic component is provided which comprises a polar element electrically connected to a positive lead and a negative lead, and a package enclosing the polar element together with part of the respective leads, the package having a mounting face. The leads have respective contact ends bent substantially in parallel to the mounting face of the package for contact with corresponding electrode pads of a circuit board. One of the leads has a projection extending beyond the contact end of said one lead for insertion into an insertion hole formed at a relevant one of the electrode pads.