摘要:
A method for forming a deposited film containing microcrystalline silicon on a moving substrate by plasma-enhanced CVD includes forming a deposited film containing microcrystalline silicon on a moving substrate by plasma-enhanced CVD under conditions such that when a deposited film having a thickness of 300 nm or more is formed on a substrate while the substrate is in a stationary state, an area of the microcrystalline silicon region in which an intensity of Raman scattering attributed to a crystalline substance in the deposited film is equal to or higher than three times an intensity of Raman scattering attributed to an amorphous is 50% or more of the total area based on the area of the microcrystalline silicon region and the area of a region composed of the amorphous.
摘要:
A method for forming a deposited film containing microcrystalline silicon on a moving substrate by plasma-enhanced CVD includes forming a deposited film containing microcrystalline silicon on a moving substrate by plasma-enhanced CVD under conditions such that when a deposited film having a thickness of 300 nm or more is formed on a substrate while the substrate is in a stationary state, an area of the microcrystalline silicon region in which an intensity of Raman scattering attributed to a crystalline substance in the deposited film is equal to or higher than three times an intensity of Raman scattering attributed to an amorphous is 50% or more of the total area based on the area of the microcrystalline silicon region and the area of a region composed of the amorphous.
摘要:
A gas adsorptive member is disposed in a space communicating with film deposition chambers, and deposition films are deposited while continuously feeding gas components released from this member, thereby enabling the high quality and uniform deposition films to be formed on the substrate with good reproducibility.
摘要:
A gas adsorptive member is disposed in a space communicating with film deposition chambers, and deposition films are deposited while continuously feeding gas components released from this member, thereby enabling the high quality and uniform deposition films to be formed on the substrate with good reproducibility.
摘要:
A photovoltaic element comprising a substrate and a multi-layered semiconductor active layer having a pin junction structure disposed on said substrate, said multi-layered semiconductor layer comprising a non-single crystal semiconductor layer of n- or p-type, a non-single crystal i-type semiconductor layer and a non-single crystal semiconductor layer of p- or n-type being stacked in this order from the substrate side, characterized in that said i-type semiconductor layer comprises a three-layered structure comprising a non-single crystal layer (b) formed by means of a microwave plasma CVD process interposed between a pair of non-single crystal layers (a) and (c) each formed by means of a RF plasma CVD process, and said i-type layer (b) is a non-single crystal i-type layer formed by means of the microwave plasma process from a mixture of a silane series gas not containing chlorine atom(s), a chlorine-containing raw material gas in an amount of 10% or less of the total amount of the chlorine-free silane series gas and the chlorine-containing raw material gas, and hydrogen gas.
摘要:
A process is provided whereby a membrane/electrode assembly for polymer electrolyte fuel cells whereby a high output voltage is obtainable within a wide range of current densities.A process for producing a membrane/electrode assembly 1 comprising a first electrode 10 having a first catalyst layer 12 and a first gas diffusion layer 14, a second electrode 20 having a second catalyst layer 22 and a second gas diffusion layer 24, and an electrolyte membrane 30, wherein the first gas diffusion layer 14, a first intermediate having the first catalyst layer 12 formed on the surface of the electrolyte membrane 30 by coating followed by annealing, and a second intermediate having the second catalyst layer 22 formed on the surface of the second gas diffusion layer 24 by coating, are bonded, so that the first catalyst layer 12 is located between the first gas diffusion layer 14 and the electrolyte membrane 30, and the second catalyst layer 22 is located between the second gas diffusion layer 24 and the electrolyte membrane 30.
摘要:
In the production of a membrane/electrode assembly 10, a first catalyst layer 22 (a second catalyst layer 34) is formed by a process comprising steps (a) and (b). (a) A step of applying a coating fluid comprising a catalyst and an ion-exchange resin, on a substrate to form a coating fluid layer. (b) A step of disposing a reinforcing layer 24 (34) on the coating fluid layer formed in the step (a) and then, drying the coating fluid layer to form a first catalyst layer 22 (a second catalyst layer 34) The process provides a catalyst layer whereby defects such as cracks are scarcely formed in the catalyst layer, and the bond strength is high at the interface between the catalyst layer and a reinforcing layer and at the interface between the catalyst layer and a polymer electrolyte membrane.
摘要:
A non-volatile semiconductor memory device according to the invention includes a copy area latch circuit for latching information therein, a copy source address latch circuit for latching therein information read from a copy source, and write control means for comparing the information latched in the copy area latch circuit and the information latched in the copy source address latch circuit with each other, and automatically copying data latched in a source area of the copy source to a destination area of a copy destination, the destination area corresponding to the source area, until the information latched in the copy area latch circuit and the information latched in the copy source address latch circuit become coincide with each other following implementation of a newly provided copy command when data is copied from external storage means as a copy source to a non-volatile memory.
摘要:
A method for forming a deposited film, comprising generating plasma in a plurality of successive vacuum containers and continuously forming a deposited film on a belt-like substrate while continuously moving the substrate in its longitudinal direction, wherein an opening of a discharge container is adjusted with an opening adjusting plate having a shape set so as to reduce ununiformity of a deposited film thickness in a width direction of the substrate on the basis of a measurement of a deposition rate distribution. Accordingly, there is provided a method and an apparatus for forming a deposited film which are capable of producing a photovoltaic element without ununiformity in characteristics by depositing semiconductor layers without ununiformity in thickness and quality.
摘要:
A process comprising: providing a substrate with a catalyst layer thereon; depositing a first ionomer overcoat layer over the catalyst layer, the first ionomer overcoat layer comprising an ionomer and a first solvent; drying the first ionomer overcoat layer to provide a first electrode ionomer overcoat layer; depositing a second ionomer overcoat layer over the first electrode ionomer overcoat layer, and wherein the second ionomer overcoat layer comprises an ionomer and a second solvent.