摘要:
A method of forming a bump structure through the use of an electroplating solution, comprising the following steps. A substrate having an overlying conductive structure is provided. A patterned dry film resist is formed over the conductive structure. The patterned dry film resist having a trench exposing a portion of conductive structure. The patterned dry film resist adhering to the conductive structure at an interface. The structure is treated with a treatment that increases the adherence of the patterned dry film resist to the conductive structure at the interface. A conductive plug is over the exposed portion of the conductive structure within the trench through the use of the electroplating solution. The increased adhesion of the patterned dry film resist to the conductive structure at the interface preventing the electroplating solution from penetrating the interface of the patterned dry film resist and the conductive structure during the formation of the conductive plug. The patterned dry film resist is removed from the conductive structure. The conductive plug is reflowed to form the bump structure.
摘要:
A method for alignment to an alignment mark array within a patterned electronic material layer, formed on a substrate employed in a microelectronics fabrication, with improved registration accuracy of a subsequent step-and-repeat photomask pattern. There is first provided a substrate upon which is formed a patterned microelectronics layer containing an alignment mark array. There is then formed over the substrate and patterned layer, covering over the alignment marks, a subsequent layer or layers which may be of opaque material. In order to align properly a patterned photomask for patterning the overlying layer by means of conventional photolithography, the alignment mark array is located by first scanning with a laser light source contained within a step-and-repeat apparatus containing the patterned photomask and detecting the optical radiation signal scattered from the alignment mark array. The accuracy of location may be enhanced by rotating the orientation of the alignment mark array with respect to the direction of scanning with the laser light source by 90 degrees to render the subsequent orientation orthogonal to the first orientation, and then repeating the scanning operation. The altered nature of the back-scattered light signal from the orthogonal scanning direction provides additional information for improving the precision of location and alignment.
摘要:
Methods of fabricating semiconductor devices with high-k/metal gate features are disclosed. In some instances, methods of fabricating semiconductor devices with high-k/metal gate features are disclosed that prevent or reduce high-k/metal gate contamination of non-high-k/metal gate wafers and production tools. In some embodiments, the method comprises forming an interfacial layer over a semiconductor substrate on a front side of the substrate; forming a high-k dielectric layer and a capping layer over the interfacial layer; forming a metal layer over the high-k and capping layers; forming a polysilicon layer over the metal layer; and forming a dielectric layer over the semiconductor substrate on a back side of the substrate.
摘要:
Provided is a method of semiconductor fabrication including process steps allowing for defining and/or modifying a gate structure height during the fabrication process. The gate structure height may be modified (e.g., decreased) at one or more stages during the fabrication by etching a portion of a polysilicon layer included in the gate structure. The method includes forming a coating layer on the substrate and overlying the gate structure. The coating layer is etched back to expose a portion of the gate structure. The gate structure (e.g., polysilicon) is etched back to decrease the height of the gate structure.
摘要:
Methods of fabricating semiconductor devices with high-k/metal gate features are disclosed. In some instances, methods of fabricating semiconductor devices with high-k/metal gate features are disclosed that prevent or reduce high-k/metal gate contamination of non-high-k/metal gate wafers and production tools. In some embodiments, the method comprises forming an interfacial layer over a semiconductor substrate on a front side of the substrate; forming a high-k dielectric layer and a capping layer over the interfacial layer; forming a metal layer over the high-k and capping layers; forming a polysilicon layer over the metal layer; and forming a dielectric layer over the semiconductor substrate on a back side of the substrate.
摘要:
A device includes a semiconductor substrate, and a plurality of semiconductor fins parallel to each other, wherein the plurality of semiconductor fins is a portion of the semiconductor substrate. A Shallow Trench Isolation (STI) region is on a side of the plurality of semiconductor fins. The STI region has a top surface and a non-flat bottom surface, wherein the plurality of semiconductor fins is over the top surface of the STI region.
摘要:
A device includes a semiconductor substrate, and a plurality of semiconductor fins parallel to each other, wherein the plurality of semiconductor fins is a portion of the semiconductor substrate. A Shallow Trench Isolation (STI) region is on a side of the plurality of semiconductor fins. The STI region has a top surface and a non-flat bottom surface, wherein the plurality of semiconductor fins is over the top surface of the STI region.
摘要:
An exemplary structure for a gate structure of a field effect transistor comprises a gate electrode; a gate insulator under the gate electrode having footing regions on opposing sides of the gate electrode; and a sealing layer on sidewalls of the gate structure, wherein a thickness of lower portion of the sealing layer overlying the footing regions is less than a thickness of upper portion of the sealing layer on sidewalls of the gate electrode, whereby the field effect transistor made has almost no recess in the substrate surface.
摘要:
Methods of fabricating semiconductor devices with high-k/metal gate features are disclosed. In some instances, methods of fabricating semiconductor devices with high-k/metal gate features are disclosed that prevent or reduce high-k/metal gate contamination of non-high-k/metal gate wafers and production tools. In some embodiments, the method comprises forming an interfacial layer over a semiconductor substrate on a front side of the substrate; forming a high-k dielectric layer and a capping layer over the interfacial layer; forming a metal layer over the high-k and capping layers; forming a polysilicon layer over the metal layer; and forming a dielectric layer over the semiconductor substrate on a back side of the substrate.
摘要:
The disclosure relates to integrated circuit fabrication, and more particularly to an electronic device with an isolation structure having almost no divot. An exemplary method for fabricating an isolation structure, comprising: forming a pad oxide layer over a top surface of a substrate; forming an opening in the pad oxide layer, exposing a portion of the substrate; etching the exposed portion of the substrate, forming a trench in the substrate; filling the trench with an insulator; exposing a surface of the pad oxide layer and a surface of the insulator to a vapor mixture including at least an NH3 and a fluorine-containing compound; and heating the substrate at a temperature between 100° C. to 200° C.