摘要:
Example embodiments herein relate to a method of fabricating a semiconductor device. The method may include forming a liner insulating layer on a surface of a gate pattern to have a first thickness. Subsequently, a gap fill layer may be formed on the liner insulating layer by flowable chemical vapor deposition (FCVD) or spin-on-glass (SOG). The liner insulating layer and the gap fill layer may be recessed such that the liner insulating layer has a second thickness, which is smaller than the first thickness, in the region in which a metal silicide will be formed. Metal silicide may be formed on the plurality of gate patterns to have a relatively uniform thickness using the difference in thickness of the liner insulating layer.
摘要:
Example embodiments herein relate to a method of fabricating a semiconductor device. The method may include forming a liner insulating layer on a surface of a gate pattern to have a first thickness. Subsequently, a gap fill layer may be formed on the liner insulating layer by flowable chemical vapor deposition (FCVD) or spin-on-glass (SOG). The liner insulating layer and the gap fill layer may be recessed such that the liner insulating layer has a second thickness, which is smaller than the first thickness, in the region in which a metal silicide will be formed. Metal silicide may be formed on the plurality of gate patterns to have a relatively uniform thickness using the difference in thickness of the liner insulating layer.
摘要:
A method of fabricating a semiconductor device includes forming a first trench and a second trench in a semiconductor substrate, forming a first insulator to completely fill the first trench, the first insulator covering a bottom surface and lower sidewalls of the second trench and exposing upper sidewalls of the second trench, and forming a second insulator on the first insulator in the second trench.
摘要:
A method of fabricating a semiconductor device includes forming a first trench and a second trench in a semiconductor substrate, forming a first insulator to completely fill the first trench, the first insulator covering a bottom surface and lower sidewalls of the second trench and exposing upper sidewalls of the second trench, and forming a second insulator on the first insulator in the second trench.
摘要:
A method of forming a trench isolation layer can include forming an isolation layer in a trench using High Density Plasma Chemical Vapor Deposition (HDPCVD) with a carrier gas comprising hydrogen. Other methods are disclosed.
摘要:
A method of forming a trench isolation layer can include forming an isolation layer in a trench using High Density Plasma Chemical Vapor Deposition (HDPCVD) with a carrier gas comprising hydrogen. Other methods are disclosed.
摘要:
Disclosed are methods for fabricating semiconductor devices incorporating a composite trench isolation structure comprising a first oxide pattern, a SOG pattern and a second oxide pattern wherein the oxide patterns enclose the SOG pattern. The methods include the deposition of a first oxide layer and a SOG layer to fill recessed trench regions formed in the substrate. The first oxide layer and the SOG layer are then subjected to a planarization sequence including a CMP process followed by an etchback process to form a composite structure having a substantially flat upper surface that exposes both the oxide and the SOG material. The second oxide layer is then applied and subjected to a similar CMP/etchback sequence to obtain a composite structure having an upper surface that is recessed relative to a plane defined by the surfaces of adjacent active regions.
摘要:
One embodiment of a method of fabricating a flash memory device includes forming a trench mask pattern, which includes a gate insulation pattern and a charge storage pattern stacked in sequence, on a semiconductor substrate; etching the semiconductor substrate using the trench mask pattern as an etch mask to form trenches defining active regions; and sequentially forming lower and upper device isolation patterns in the trench. After sequentially forming an intergate insulation film and a control gate film on the upper device isolation pattern, the control gate film, the intergate insulation pattern and the gloating gate pattern are formed, thereby providing gate lines crossing over the active regions.
摘要:
A semiconductor device includes a substrate having a trench, a liner layer pattern on sidewalls and a bottom surface of the trench, the liner layer pattern including a first oxide layer pattern and a second oxide layer pattern, a diffusion blocking layer pattern on the liner layer pattern, and an isolation layer pattern in the trench on the diffusion blocking layer pattern.
摘要:
Disclosed are methods for fabricating semiconductor devices incorporating a composite trench isolation structure comprising a first oxide pattern, a SOG pattern and a second oxide pattern wherein the oxide patterns enclose the SOG pattern. The methods include the deposition of a first oxide layer and a SOG layer to fill recessed trench regions formed in the substrate. The first oxide layer and the SOG layer are then subjected to a planarization sequence including a CMP process followed by an etchback process to form a composite structure having a substantially flat upper surface that exposes both the oxide and the SOG material. The second oxide layer is then applied and subjected to a similar CMP/etchback sequence to obtain a composite structure having an upper surface that is recessed relative to a plane defined by the surfaces of adjacent active regions.