摘要:
A control device for a multi-cylinder internal combustion engine that is equipped with a variable compression ratio mechanism includes an air-fuel ratio sensor, and a controller that determines whether or not actual mechanical compression ratios in cylinders of the internal combustion engine are uniform. The controller controls the variable compression ratio mechanism by decreasing a target mechanical compression ratio from a current first target mechanical compression ratio to a second target mechanical compression ratio without changing the amount of intake air and a fuel injection amount, and determines that the actual mechanical compression ratios in the cylinders are not uniform when the target mechanical compression ratio is set at the first target mechanical compression ratio if the differences in the output air-fuel ratios from the air-fuel ratio sensor for exhaust gases from the cylinders before and after the control of the variable compression ratio mechanism are not uniform.
摘要:
A control device for a multi-cylinder internal combustion engine that is equipped with a variable compression ratio mechanism includes an air-fuel ratio sensor, and a controller that determines whether or not actual mechanical compression ratios in cylinders of the internal combustion engine are uniform. The controller controls the variable compression ratio mechanism by decreasing a target mechanical compression ratio from a current first target mechanical compression ratio to a second target mechanical compression ratio without changing the amount of intake air and a fuel injection amount, and determines that the actual mechanical compression ratios in the cylinders are not uniform when the target mechanical compression ratio is set at the first target mechanical compression ratio if the differences in the output air-fuel ratios from the air-fuel ratio sensor for exhaust gases from the cylinders before and after the control of the variable compression ratio mechanism are not uniform.
摘要:
It is an object of the invention to enhance the possibility of realizing a required torque in a supercharging region where scavenging occurs in a control apparatus for a supercharged engine. In order to achieve this object, the control apparatus for the supercharged engine according to the invention determines an operation amount of an intake valve driving device from a target in-cylinder air amount that is calculated from a required torque, and determines an operation amount of a throttle from a target intake valve passing air amount that is obtained by adding an amount of air blowing through an interior of a cylinder to the target in-cylinder air amount.
摘要:
This invention has an object to enable update of learning values of a large number of grid points in one session of a learning operation and also to easily adjust learning speed and efficiency in a wide learning region.An engine 10 is provided with an ECU 60 for executing engine control by using various control parameters. The ECU 60 includes a learning map storing a learning value of the control parameter and executes weighting learning control of the learning value. In the weighting learning control, each time the control parameter is acquired, a weight wkij decreasing larger if a distance from a position of an acquired value zk of the control parameter to a grid point is larger is set to each of the grid points of the learning map. Then, on the basis of the acquired value zk of the control parameter and the weight wkij, the learning values Zij(k) at all the grid points are updated. As a result, all the learning values can be efficiently updated in one session of the learning operation.
摘要:
A control device for an internal combustion engine. An object of the present invention is to provide a control device for an international combustion engine for highly accurate absolute pressure correction irrespective of the length of an adiabatic compression stroke period. When the number of cylinders in an engine is n (n is an integer of 2 or more), an adiabatic compression stroke period of one cylinder preceding another cylinder to be corrected into its absolute pressure by a 1/n cycle (ignition timing —IVC) is compared with a threshold CATH (step 100). In the step 100, the absolute pressure correction is carried out based on PVκ=constant when the adiabatic compression stroke period is longer than the threshold CATH (step 110). On the other hand, the absolute pressure correction is carried out based on a value PIP detected by an intake pipe pressure sensor when the adiabatic compression stroke period is shorter than the threshold CATH.
摘要:
An internal combustion engine which is provided with a variable compression ratio mechanism which can change a mechanical compression ratio and a variable valve timing mechanism which can control a closing timing of an intake valve. No-entry regions (X1, X2) are set for a combination of the mechanical compression ratio, the closing timing of the intake valve, and the intake air amount. Furthermore, a no-entry layer is set so as to surround the no-entry region (X2). When the demanded intake air amount is made to decrease and the operating point moves toward the no-entry region (X2), the operating point is prohibited from entering the no-entry layer whereby the operating point is blocked from entering the no-entry region (X2).
摘要:
A control device for an internal combustion engine. An object of the present invention is to provide a control device for an international combustion engine for highly accurate absolute pressure correction irrespective of the length of an adiabatic compression stroke period. When the number of cylinders in an engine is n (n is an integer of 2 or more), an adiabatic compression stroke period of one cylinder preceding another cylinder to be corrected into its absolute pressure by a 1/n cycle (ignition timing—IVC) is compared with a threshold CATH (step 100). In the step 100, the absolute pressure correction is carried out based on PVκ=constant when the adiabatic compression stroke period is longer than the threshold CATH (step 110). On the other hand, the absolute pressure correction is carried out based on a value PIP detected by an intake pipe pressure sensor when the adiabatic compression stroke period is shorter than the threshold CATH.
摘要:
Disclosed is a control device, which controls an air-fuel ratio sensor that is mounted in an exhaust path of an internal-combustion engine. The air-fuel ratio sensor is capable of pumping oxygen in a gas. Normally (time t0-t1, time t3 or later), a positive voltage Vp1 is applied to a sensor element (FIG. 7A), and the air-fuel ratio is calculated (FIG. 7C) in accordance with a sensor current (FIG. 7B). A heater is driven after internal-combustion engine startup to heat the sensor element. In a process in which the sensor element temperature rises, a negative voltage Vm, which is oriented in a direction different from that of the positive voltage Vp1, is applied to the sensor element.
摘要:
An internal combustion engine which is provided with a variable compression ratio mechanism which can change a mechanical compression ratio and a variable valve timing mechanism which can control a closing timing of an intake valve. No-entry regions (X1, X2) are set for a combination of the mechanical compression ratio, the closing timing of the intake valve, and the intake air amount. Furthermore, a no-entry layer is set so as to surround the no-entry region (X2). When the demanded intake air amount is made to decrease and the operating point moves toward the no-entry region (X2), the operating point is prohibited from entering the no-entry layer whereby the operating point is blocked from entering the no-entry region (X2).
摘要:
With the use of a model expression (FIG. 9C), of which inputs include a desired value of an in-cylinder air amount that is a controlled object of a system and predetermined parameters, such as engine speed (ne), a desired throttle opening degree (θref) required to control the in-cylinder air amount to the desired value is calculated. In this model expression, parameters, such as the engine speed (ne), that oscillate at a relatively high frequency are excluded from subjects of differentiation, and the desired in-cylinder air amount value only is included in the subjects of differentiation.