摘要:
A lead frame 24 comprising an inner lead 22 and outer lead 23 is sealingly filled from a through-hole into a package 21. A CCD chip 27 is inserted from an inlet 26 into the package 21. An electrode pad 28 is connected to the inner lead 22 via a bump 29 to complete an optical positioning and an electrical connection, then the positions of these components are fixed by glue. As a result, a solid-state image sensing apparatus can be manufactured at a low cost, and an accurate positioning can be realized. Thus, the solid-state image sensing apparatus can be employed to a video camera of high quality picture to reproduce vivid colors and fine pictures.
摘要:
In a lens array, a multiplicity of condenser lenses, each in a convex lens form, are arrayed in vertical and horizontal directions so as to correspond to pixel regions, respectively, and each condenser lens, when viewed from a direction perpendicular to a condenser lens-arrayed plane, takes a planar shape formed with a four straight sides along four sides of the pixel region and four circular arcs extending between the respective straight sides. A center of the four circular arcs substantially coincides with a center of the corresponding pixel region. This ensures an increase in area covered with the condenser lens in the pixel region, thereby causing more light rays to enter the condenser lens. In addition, a radius of curvature necessary for collecting can be obtained more easily. Consequently, light rays can be efficiently collected and guided to light receiving sections or the like provided in the pixel regions. Accordingly, sensitivity is improved when such a lens array is used in a solid-state imaging element, while luminance of a screen is improved when it is used in a panel display element. Besides, such a lens array is easily manufactured.
摘要:
There are provided image pickup devices capable of significantly increasing production yield and ensuring long-term reliability and a method for manufacturing the image pickup devices. This invention is characterized in that it has a large number of light-receiving portions 2 formed at a surface portion of a wafer 1 and a microlens 3 formed for each of the light-receiving portions, through electrodes 4 for performing supply of power to the light-receiving portions 2 and passing and reception of an electrical signal are provided all over the periphery of the wafer 1, one end of each through electrode 4 is connected to an electrode pad 4a which is connected to a wire leading to a light-receiving element at the surface portion of the wafer 1, the other end is connected to a wire through a back electrode 5, a rib 7 which serves as a partition portion arranged to surround the microlenses 3 on four sides is provided on the surface of the wafer 1, a transparent plate 8 of optical glass or the like is bonded to an upper surface of the rib 7 with adhesive, and a protective frame 10 is provided at a junction between the rib 7 and the transparent plate 8.
摘要:
In a CCD device, a plurality of trench holes are formed in high resistivity semiconductor layer and juxtaposed in a charge transfer direction, and charge transfer electrodes are buried in the trench holes. Charge transfer regions are formed in the semiconductor layer around the vicinity of the respective trench holes during a main operating state.
摘要:
A solid-state imaging device includes pixels arranged in a matrix on a semiconductor substrate, the pixels each including: a photodiode for photoelectric-converting an incident light beam; a readout transistor for reading out a signal charge from the photodiode; and a floating diffusion region for converting the read out signal charge into a voltage, wherein the semiconductor substrate is of an n-type, a first p-type well is provided below an n-type forming layer of the photodiode so as to be located at a distant position from a surface of the n-type substrate at the photodiode side, and partially or entirely below the readout transistor, the first p-type well is formed so as to reach the surface of the semiconductor substrate.
摘要:
A solid state imaging device detects the period of energy variation of discharge type illumination, and sets a total exposure time to match the detected period. The total exposure time is divided into alternating valid and invalid exposure times by a division ratio to make the sum of the valid exposure times equal to an actual exposure time corresponding to an actual speed of an electronic shutter. Charges accumulated in a CMOS sensor during the valid exposure times are stored in a floating diffusion, whereas charges accumulated during the invalid exposure times are drained. At the end of the total exposure time, the charges stored during the valid exposure times are converted to an electrical signal which is output to a signal processing circuit. This device can correct variation of output signals which corresponds to the illumination energy variation when the shutter is operated for imaging under high luminance illumination.
摘要:
A solid-state image pick-up device has transfer gates and storage capacitive elements with smaller capacitance than that of a vertical transfer lines between the vertical transfer lines to which signal charge is transferred through the operation of a signal charge transfer circuit containing the vertical shift register and switch elements, and a horizontal shift register for receiving the signal charge. The horizontal shift register is of the charge coupling type. The horizontal shift register has unit elements two times the vertical transfer lines. An optical signal and the other charge than the optical signal charge are stored in the adjacent unit elements and then the other charge than the optical charge is outputted to the other portion than a signal output portion.A charge transfer method for the solid state image pick-up device comprises a first step of injecting bias charge from the storage capacitive elements to the vertical transfer lines, a second step for transferring a changed amount of the charge on the vertical transfer line and the bias charge to the storage capacitive element and a third step for transferring only the changed amount of the charge to the horizontal shift register.
摘要:
The impurity density of a photoelectric transducer n-layer (7) and the impurity density of a p-layer ( 6 ) of an impurity region in which the electric transducer (7) and a transfer channel (9) are formed, are each distributed to have its maximum value in a more interior part from the surface of a semiconductor substrate (5). Alternatively, i) a thin, high-density p-layer (34) and ii) a thick, low-density p-layer (33) of an impurity region in which the electric transducer (7) and the transfer channel (9 ) are formed may be formed. Each minimum potential in these two p-layers (33, 34) is made to have a different dependence on the voltage applied to an n-type semiconductor substrate ( 5). The thick, low-density p-layer ( 33 ) is formed in such a way that it comes into contact with part of the photoelectric transducer n-layer (7) at its bottom portion. The above constitution can bring about a solid-state image pickup device that can prevent the blooming phenomenon, causes less residual images, and can operate as an electronic shutter with ease.
摘要:
Signal charge conveying regions are made as oblong depletion regions which are formed in operation state along and at the vicinity of side walls of a trench or groove in a seimconductor imaging device, thereby improving resolution power, dynamic range, sensitivity and S/N characteristics are improved.
摘要:
Techniques described herein generally relate to digital imaging systems, methods and devices. In some example embodiments, a low light adaptive photoelectric imaging device may include a photoelectric transducer configured to receive and convert incident light into an electric charge that varies in response to an intensity of the received incident light. Some example imaging devices may also include circuitry coupled to the photoelectric transducer and configured to electrically float a potential at one or more terminals of the photoelectric transducer effective to cause the photoelectric transducer to amplify the electric charge according to a gain function that non-linearly varies relative to the intensity of the received incident light.