摘要:
A method of manufacturing a semiconductor memory according to the present invention includes steps of forming an insulating film, into which a conductive plug connected to a source or a drain in a transistor in a memory cell region and into which a first conductive layer which will become a part of a circuit in a peripheral circuit region are buried, on a semiconductor substrate, forming a first interlayer insulating film on the insulating film, forming, in the first interlayer insulating film, conductive plugs for connecting a first conductive layer and a second conductive layer arranged in a layer upper than the first interlayer insulating film, forming lower electrode of the capacitor in the first interlayer insulating film after the connection plugs are formed, forming capacitance insulating film, and forming upper electrode of the capacitor.
摘要:
A semiconductor device includes a semiconductor substrate; a well of a first conductivity type in the semiconductor substrate; a first element; and a first vertical transistor. The first element supplies potential to the well, the first element being in the well. The first element may include, but is not limited to, a first pillar body of the first conductivity type. The first pillar body has an upper portion that includes a first diffusion layer of the first conductivity type. The first diffusion layer is greater in impurity concentration than the well. The first vertical transistor is in the well. The first vertical transistor may include a second pillar body of the first conductivity type. The second pillar body has an upper portion that includes a second diffusion layer of a second conductivity type.
摘要:
A manufacturing method of a semiconductor device includes the steps of: forming an insulating pillar on the main surface of a silicon substrate; forming a protective film on the side surface of the insulating pillar; forming a silicon pillar on the main surface of the silicon substrate; forming a gate insulating film on the side surface of the silicon pillar; and forming first and second gate electrodes so as to contact each other and so as to cover the side surfaces of the silicon pillar and insulating pillar, respectively. According to the present manufacturing method, the protective film is formed on the side surface of the insulating pillar as a dummy pillar, thus preventing the dummy pillar from being eroded when the silicon pillar for channel is processed into a transistor. Therefore, it is possible to reduce a probability of occurrence of gate electrode disconnection.
摘要:
A semiconductor memory device includes a silicon pillar, a gate electrode covering a side surface of the silicon pillar via a gate insulation film, diffusion layers (11, 12) provided in a lower part and an upper part, respectively of the silicon pillar, a bit line connected to the diffusion layer (11), and a memory element connected to the diffusion layer (12). The bit line includes a silicon material region in contact with the diffusion layer (11), and a low-resistance region including a material having lower electric resistance than that of the silicon material region. As a result, the resistance of the bit line embedded in the substrate can be decreased.
摘要:
The present invention provides a semiconductor memory which has sense amplifiers, each including a pair of MOSFETs having complete symmetry in regard to not only the shape but also to the impurity profile in a diffusion layer, and the present invention is also capable of reducing variations in electric characteristics, and provides a method of manufacturing the same. Annular gate electrodes 12a, 12b are formed on diffusion layer 11. Gate electrodes 13 are formed simultaneously with a sense amplifier along edges of diffusion layer 11 to bestride the boundary between diffusion layer 11 and r shallow trench isolation area 20. Contacts 16 are formed on diffusion layer 11; contacts 17a, 17b on diffusion layer 11 within annular gate electrodes 12a, 12b, respectively; and contacts 18 on gate electrodes 12a, 12b of the sense amplifier. All components are arranged in symmetry, and gate electrodes 13 running along the edges of diffusion layer 11 hold the same spacings 14, 15 between gate electrodes 12a, 12b and gate electrodes 13, so that an impurity profile in diffusion layer 11 is not affected by the edges of shallow trench isolation area 20. Consequently, the MOSFETs are arranged in complete symmetry and contribute to a reduction of variation in the characteristics.
摘要:
A semiconductor device includes low voltage and high voltage transistors over a substrate. The low voltage transistor is configured by at least one unit transistor. The high voltage transistor is configured by a greater number of the unit transistors than the at least one unit transistor that configures the low voltage transistor. Each of the unit transistors may include a vertically extending portion of semiconductor providing a channel region and having a uniform height, a gate insulating film extending along a side surface of the vertically extending portion of semiconductor, a gate electrode separated by the gate insulating film from the vertically extending portion of semiconductor, and upper and lower diffusion regions being respectively disposed near the top and bottom of the vertically extending portion of semiconductor. The greater number of the unit transistors are connected in series to each other and have gate electrodes eclectically connected to each other.
摘要:
A method of manufacturing a semiconductor device which includes a first gate wiring layer and a second gate wiring layer adjacent to each other; a first diffused layer provided on a side between the wiring layers; a second diffused layer provided on one side external to the side between the wiring layers; and a third diffused layer provided on the other side external to the side between the wiring layers, the method including: forming a first mask including an opening; implanting a channel impurity for threshold voltage control using the first mask; forming a first diffused layer using the first mask by implanting a first impurity; forming a first gate wiring layer and a second gate wiring layer after removing the first mask; and forming a second diffused layer and a third diffused layer using the first gate wiring layer and the second gate wiring layer as a second mask by implanting a second impurity.
摘要:
The present invention provides a structure for a semiconductor device, capable of eliminating the generation of defective products due to poor connection. In the present semiconductor device, an n-type high concentration diffusion layer 2 is selectively formed on the P-type silicon substrate 1, and on the diffusion layer 2, a silicon oxide film 3 is formed as a first interlayer insulating film 3. A silicon plug 4 is disposed on the n-type high concentration diffusion layer 2. On the top end surface of the polysilicon plug 4, a silicide pad 5 is formed in a self-aligning manner such that the width of the silicide pad 5 is larger than that of the polysilicon plug 4. A second interlayer insulating film is formed so as to cover the first interlayer insulating film 3 and the silicide pad 5, and a tungsten plug 7 is disposed on the silicide pad 5. On the second interlayer insulating film, wiring 8, made of an aluminum-copper alloy and connected to the tungsten plug, is formed.
摘要:
Disclosed herein is a semiconductor memory device including a plurality of memory cells each includes an active region which is defined in a column direction by a pair of trench isolation regions formed in a semiconductor substrate and in a row direction by an isolation gate conductor lines formed on a first gate insulating film covering the substrate, a source and a drain region selectively formed in the active region to define a channel region of a cell transistor, a second gate insulating film formed on the channel region, a word line formed on the second gate insulating film, a first insulating film covering the active region and the word line, a bit line formed on the first insulating film to overlap with the isolation gate conductor, a bit line connection conductor formed in the first insulating film to connect the drain region to the bit line with being in contact with the sidewall surface of the bit line, a second insulating film covering the bit line and the first insulating film, and a storage capacitor having a capacitor electrode connected to the source region through a contact hole provided in the first and second insulating film.
摘要:
When tantalum oxide is used for a dielectric film of a stacked type storage capacitor forming a memory cell together with a switching transistor, heat treatments are limited to 530 degrees centigrade in the stages after the deposition of the tantalum oxide, and leakage current across the tantalum oxide is drastically decreased.