摘要:
A silicon nitride sintered body, wherein in a silicon nitride substrate consisting of crystal grains of β-type silicon nitride and a grain boundary phase containing at least one type of rare earth element (RE), magnesium (Mg) and silicon (Si), the grain boundary phase consists of an amorphous phase and a MgSiN2 crystal phase. The X-ray diffraction peak intensity of any crystal plane of a crystal phase containing the rare earth element (RE) is less than 0.0005 times the sum of the diffraction peak intensities of (110), (200), (101), (210), (201), (310), (320) and (002) of the crystal grains of the β-type silicon nitride; and the X-ray diffraction peak intensity of (121) of the MgSiN2 crystal phase is 0.0005 to 0.003 times the sum of the X-ray diffraction peak intensities of (110), (200), (101), (210), (201), (310), (320) and (002) of the crystal grains of the β-type silicon nitride.
摘要:
In the silicon nitride substrate concerning an embodiment of the invention, degree of in-plane orientation fa of β type silicon nitride is 0.4-0.8. Here, degree of in-plane orientation fa can be determined by the rate of the diffracted X-ray intensity in each lattice plane orientation in β type silicon nitride. As a result of research by the inventors, it turned out that both high fracture toughness and high thermal conductivity are acquired, when degree of in-plane orientation fa was 0.4-0.8. Along the thickness direction, both the fracture toughness of 6.0 MPa·m1/2 or higher and the thermal conductivity of 90 W/m·K or higher can be attained.
摘要:
A silicon nitride substrate having appropriately adjusted warpage and surface roughness can be obtained by mixing magnesium oxide of 3 to 4 wt % and at least one kind of rare-earth element oxide of 2 to 5 wt % with silicon nitride source material powder to form a sheet-molded body, sintering the sheet-molded body, and performing a heat treatment at a temperature of 1,550 to 1,700 degree C. with a pressure of 0.5 to 6.0 kPa with a plurality of substrates being stacked. Also, a silicon nitride circuit board and a semiconductor module using the same are provided.
摘要:
An object of this invention is to get a circuit board and a semiconductor module with high endurance against thermal cycles, and which is hard to be broken under thermal cycles, even if thick metal circuit board and thick metal heat sink are used, corresponding to high power operation of semiconductor chip. This circuit board comprises, an insulating-ceramic substrate, a metal circuit plate bonded to one face of the insulating-ceramic substrate, a metal heat sink bonded to another face of the insulating-ceramic substrate, wherein (t12−t22)/tc2/K
摘要翻译:本发明的一个目的是获得具有高热循环耐久性的电路板和半导体模块,并且即使使用厚金属电路板和厚金属散热器,对应于高的热循环也难以在热循环下断裂 半导体芯片的功率运行。 该电路板包括绝缘陶瓷基板,与绝缘陶瓷基板的一面接合的金属电路板,与绝缘陶瓷基板的另一面接合的金属散热器,其中(t12-t22)/ tc2 / K <1.5,绝缘陶瓷基板的厚度为tc,金属电路板的厚度为t1,金属散热片的厚度为t2,绝缘陶瓷基板的内部断裂韧性值为K.
摘要:
A manufacturing method with which a high thermal conductivity silicon nitride substrate having excellent sintering performance can be manufactured without the occurrence of a molding crack or degreasing crack, as well as to provide a silicon nitride substrate, and a silicon nitride circuit board and a semiconductor module using the silicon nitride substrate. In the manufacturing method, in which a slurry is produced by mixing a silicon nitride powder, a sintering additive powder, and a binder in an organic solvent which is a dispersion medium, and the slurry is formed into a sheet, followed by degreasing and sintering, the oxygen content of the silicon nitride powder is 2.0 mass % or less and the specific surface area of the same is 3 to 11 m2/g, the additive ratio of the sintering additive powder is 4 to 15 mol %, and the water content ratio of the organic solvent is 0.03 to 3 mass %.
摘要:
In the silicon nitride substrate concerning an embodiment of the invention, degree of in-plane orientation fa of β type silicon nitride is 0.4-0.8. Here, degree of in-plane orientation fa can be determined by the rate of the diffracted X-ray intensity in each lattice plane orientation in β type silicon nitride. As a result of research by the inventors, it turned out that both high fracture toughness and high thermal conductivity are acquired, when degree of in-plane orientation fa was 0.4-0.8. Along the thickness direction, both the fracture toughness of 6.0 MPa·m1/2 or higher and the thermal conductivity of 90 W/m·K or higher can be attained.
摘要:
A circuit board and a semiconductor module with high endurance against thermal cycles, and which is hard to be broken under thermal cycles, even if thick metal circuit board and thick metal heat sink are used, corresponding to high power operation of a semiconductor chip are provided. This circuit board includes, an insulating-ceramic substrate, a metal circuit plate bonded to one face of the insulating-ceramic substrate, a metal heat sink bonded to another face of the insulating-ceramic substrate, wherein (t12−t22)/tc2/K
摘要翻译:即使使用与半导体芯片的大功率操作相对应的厚金属电路板和厚金属散热器,也可以提供耐热循环耐久性高且难以在热循环下断开的电路板和半导体模块 。 该电路板包括绝缘陶瓷基板,与绝缘陶瓷基板的一面接合的金属电路板,与绝缘陶瓷基板的另一面接合的金属散热器,其中(t12-t22)/ tc2 / K <1.5,绝缘陶瓷基板的厚度为tc,金属电路板的厚度为t1,金属散热器的厚度为t2,绝缘陶瓷基板的内部断裂韧性值为K.
摘要:
Provided is a manufacturing method with which a high thermal conductivity silicon nitride substrate having excellent sintering performance can be manufactured without the occurrence of a molding crack or degreasing crack, as well as to provide a silicon nitride substrate, and a silicon nitride circuit board and a semiconductor module using said silicon nitride substrate.In this silicon nitride substrate manufacturing method, in which a slurry is produced by mixing a silicon nitride powder, a sintering additive powder, and a binder in an organic solvent which is a dispersion medium, and the slurry is formed into a sheet, followed by degreasing and sintering, the oxygen content of the silicon nitride powder is 2.0 mass % or less and the specific surface area of the same is 3 to 11 m2/g, the additive ratio of the sintering additive powder is 4 to 15 mol %, and the water content ratio of the organic solvent is 0.03 to 3 mass %.
摘要:
Provided are a silicon nitride substrate made of a silicon nitride sintered body that is high in strength and thermal conductivity, a method of producing the silicon nitride substrate, and a silicon nitride circuit substrate and a semiconductor module that use the silicon nitride substrate.According to the silicon nitride sintered body, in a silicon nitride substrate consisting of crystal grains 11 of β-type silicon nitride and a grain boundary phase containing at least one type of rare earth element (RE), magnesium (Mg) and silicon (Si), the grain boundary phase consists of an amorphous phase 12 and a MgSiN2 crystal phase 13; the X-ray diffraction peak intensity of any crystal plane of a crystal phase containing the rare earth element (RE) is less than 0.0005 times the sum of the diffraction peak intensities of (110), (200), (101), (210), (201), (310), (320) and (002) of the crystal grains of the β-type silicon nitride; and the X-ray diffraction peak intensity of (121) of the MgSiN2 crystal phase 13 is 0.0005 to 0.003 times the sum of the X-ray diffraction peak intensities of (110), (200), (101), (210), (201), (310), (320) and (002) of the crystal grains of the β-type silicon nitride.
摘要:
A silicon nitride substrate having appropriately adjusted warpage and surface roughness can be obtained by mixing magnesium oxide of 3 to 4 wt % and at least one kind of rare-earth element oxide of 2 to 5 wt % with silicon nitride source material powder to form a sheet-molded body, sintering the sheet-molded body, and performing a heat treatment at a temperature of 1,550 to 1,700 degree C. with a pressure of 0.5 to 6.0 kPa with a plurality of substrates being stacked. Also, a silicon nitride circuit board and a semiconductor module using the same are provided.