摘要:
Disclosed herein are a method of preparing an L-methionine production strain by overexpressing proteins involved in L-methionine biosynthesis in an L-threonine production strain, a strain prepared by the method, and a method of producing L-methionine using the strain.
摘要:
Disclosed herein are a method of preparing an L-methionine production strain by overexpressing proteins involved in L-methionine biosynthesis in an L-threonine production strain, a strain prepared by the method, and a method of producing L-methionine using the strain.
摘要:
The present invention relates to a polypeptide capable of increasing the production of L-methionine in a microorganism. In particular, the present invention relates to an YgaZ and YgaH polypeptide or a complex thereof, referred to herein as YgaZH polypeptide, which are novel putative L-methionine exporters, polynucleotides encoding the same, a recombinant vector comprising the polynucleotide, a microorganism transformed with the recombinant vector, and a method for producing L-methionine and/or S-adenosyl-methionine, comprising the steps of culturing the transformed microorganism to produce L-methionine and/or S-adenosyl-methionine, and isolating L-methionine and/or S-adenosyl-methionine. The transformed microorganism of the present invention produces L-methionine in a high yield, thereby being used for medicinal and pharmaceutical industries and feed industry, in particular, animal feeds
摘要:
The present invention relates to an amino acid-producing microorganism capable of simultaneously utilizing glycerol as a carbon source, a method for preparing the microorganism, and a method for producing amino acids using the microorganism. According to the present invention, amino acids can be efficiently produced using a byproduct of biodiesel production, glycerol, thereby substituting a cheaper material for the conventional fermentation materials such as glucose.
摘要:
Provided are a microorganism capable of producing L-threonine and having an inactivated tyrR gene, a method of producing the same and a method of producing L-threonine using the microorganism. The microorganism can be used to produce L-threonine in high yield.
摘要:
Provided are a microorganism capable of producing L-threonine and having an inactivated galR gene, a method of producing the same and a method of producing L-threonine using the microorganism. The microorganism can be used to produce L-threonine in high yield.
摘要:
Described herein are microorganisms that produce methionine and related products from endogenous genes in a transsulfuration pathway, as well as from exogenous genes providing a direct sulfhydrylation pathway. Novel genes that are useful for methionine and SAMe production are disclosed.
摘要:
Described herein are microorganisms that produce methionine and related products from endogenous genes in a transsulfuration pathway, as well as from exogenous genes providing a direct sulfhydrylation pathway. Novel genes that are useful for methionine and SAMe production are disclosed.
摘要:
The present invention relates to a method for producing lactic acid with high concentration and high yield using Lactobacillus paracasei CJLA0310 KCCM-10542 that is separated and identified from Kimchi. Lactic acid is a very important organic acid with a wide range of applications including food additive such as food preservative, condiment or acidifier, and industrial fields such as cosmetics, chemistry, metals, electronics, fabrics, dyeing textiles, and pharmaceutical industries. Particularly, lactic acid is an essential ingredient of polylactic acid, one of biodegradable plastics to replace recalcitrant non-biodegradable plastics which are main causes of environmental contamination.
摘要:
A method of producing 1,2-propandiol is provided. The method includes incubating Klebsiella pneumoniae in a medium containing 10–30 g/L of a sugar carbon source excluding 6-deoxyhexose, in aerobic conditions; and separating 1,2-propandiol from the cultures. Using the method, 1,2-propandiol can be produced with a high yield by incubating Klebsiella pneumoniae in a medium containing a cheaper sugar carbon source.