Abstract:
In a quick-release fixing structure for an electronic equipment, the electronic equipment includes a plurality of holes and a snap slot, and the quick-release fixing structure includes a substrate, a turning element and a plurality of fixing elements. The substrate includes a plurality of grooves and a port, and each groove includes a first groove hole and a second groove hole interconnected to the first groove hole, and the second groove hole is greater than the first groove hole. The turning element is coupled to the substrate and includes a bump exposed from the port and snapped into the snap slot. Each fixing element is passed through each first groove hole and fixed to each hole. The turning element can be turned to push the electronic equipment to move each fixing element into each second groove hole, and separate the electronic equipment from the substrate.
Abstract:
A calibration circuit and a calibration method are provided. The calibration circuit has a delay circuit, a phase detector, and a controller. The delay circuit delays an input signal to output an output signal, wherein a delay time between the input signal and the output signal is related to an equivalent capacitance and an equivalent resistance of the delay circuit. The phase detector coupled to the delay circuit compares the phases of the input signal and the output signal. The controller coupled to the delay circuit and the phase detector generates a control signal according to the comparison result of the phase detector to adjust the equivalent resistance of the delay circuit.
Abstract:
A calibration circuit and a calibration method are provided. The calibration circuit has a delay circuit, a phase detector, and a controller. The delay circuit delays an input signal to output an output signal, wherein a delay time between the input signal and the output signal is related to an equivalent capacitance and an equivalent resistance of the delay circuit. The phase detector coupled to the delay circuit compares the phases of the input signal and the output signal. The controller coupled to the delay circuit and the phase detector generates a control signal according to the comparison result of the phase detector to adjust the equivalent resistance of the delay circuit.
Abstract:
Disclosed is a fullerene derivative having a formula of F-Cy, wherein F is an open-cage fullerene, and Cy is a chalcogenyl group. The fullerene derivative can be applied to hydrogen storage material and an optoelectronic device such as an organic light emitting diode (OLED), a solar cell, or an organic thin film transistor (TFT).
Abstract:
A circuit provides a first current corresponding to the differential input Inn and Inp, and a second current corresponding to the common mode input Vcm. The circuit then mirrors the differential current and the common mode current to a third current and a fourth current. Based on the difference between the mirrored differential current and the mirrored common mode current, the circuit pulls up or pulls down these currents to balance the corresponding difference between the differential input and the common mode input. In effect, the circuit adjusts the input common mode voltage to a desired level, without providing an opportunity for it to rise to an unwanted level.
Abstract:
A method of sensing melt-front position and velocity is applicable for injection-molding systems. Firstly, at least one actuation signal value of the melt-injection device of the injection-molding system is retrieved, and at least one state variable value of the injection-molding system is measured. Then, the retrieved actuation signal values and the measured state variable values are substituted into a plurality of simultaneous equations to calculate the melt-front position and velocity of the injection-molding system.
Abstract:
A carrier-free semiconductor package and a fabrication method thereof are provided. The fabrication method includes the steps of: providing a carrier having a plurality of electrical contacts formed thereon; mounting at least one chip on the carrier; electrically connecting the chip to the electrical contacts via a plurality of bonding wires; forming a coating layer on each of the electrical contacts to encapsulate a bonded end of each of the bonding wires on the electrical contacts; performing a molding process to form an encapsulant for encapsulating the chip, the bonding wires and the electrical contacts; and removing the carrier, such that bottom surfaces of the electrical contacts are exposed from the encapsulant. This obtains a semiconductor package not having a carrier, and the coating layers can enhance adhesion between the electrical contacts and the encapsulant.
Abstract:
Disclosed is a fullerene derivative having a formula of F-Cy, wherein F is an open-cage fullerene, and Cy is a chalcogenyl group. The fullerene derivative can be applied to hydrogen storage material and an optoelectronic device such as an organic light emitting diode (OLED), a solar cell, or an organic thin film transistor (TFT).
Abstract:
A circuit provides a first current corresponding to the differential input Inn and Inp, and a second current corresponding to the common mode input Vcm. The circuit then mirrors the differential current and the common mode current to a third current and a fourth current. Based on the difference between the mirrored differential current and the mirrored common mode current, the circuit pulls up or pulls down these currents to balance the corresponding difference between the differential input and the common mode input. In effect, the circuit adjusts the input common mode voltage to a desired level, without providing an opportunity for it to rise to an unwanted level.
Abstract:
A signal transmission system includes a first clock signal generator and a second clock signal generator. The first clock signal generator is configured for generating a first clock signal according to clock information derived from a transmitted signal, wherein the transmitted signal is changed in response to a frequency change of a second clock signal, and the first clock signal generator enters a frequency-unlocked state if the second clock signal has a frequency transition from a first frequency to a second frequency during a first time period. The second clock signal generator is configured for generating the second clock signal having the frequency transition from the first frequency to the second frequency during a second time period longer than the first time period such that the first clock signal generator stays in a frequency-locked state during the second time period.