摘要:
The semiconductor device comprises a substrate, a first conductive layer formed on the substrate with a first insulating layer inserted therebetween, thereby to constitute a first gate electrode, a second conductive layer selectively formed on the first gate electrode with a second insulating layer inserted therebetween, and a third conductive layer formed on the first and second conductive layer, thereby to constitute first and second electrodes respectively connected to the first and second conductive layers.
摘要:
In a MIS transistor, the top surfaces of source/drain regions (S/D diffusion layers) formed on a semiconductor substrate 1 are arranged nearer to a gate electrode than a channel plane on the semiconductor substrate, and the top surfaces of the source/drain regions are arranged nearer than the channel plane than the interface between a gate insulator film provided on the upper side of the channel plane and the gate electrode. In this transistor, a groove is selectively formed in the surface of the semiconductor substrate, and a polycrystalline silicon deposited in the groove may be used as a mask to form impurity diffusion layers serving as source/drain regions to laminate and form a gate insulator film of a high dielectric film and a gate electrode. Alternatively, the polycrystalline silicon may be selectively formed to be used as a mask to elevate and form the impurity diffusion layer to laminate and form the gate insulator film and the gate electrode. Thus, it is possible to achieve both of the reduction of the resistance of the S/D diffusion layers and the reduction of the gate parasitic capacitance.
摘要:
In a MIS transistor, the top surfaces of source/drain regions (S/D diffusion layers) formed on a semiconductor substrate 1 are arranged nearer to a gate electrode than a channel plane on the semiconductor substrate, and the top surfaces of the source/drain regions are arranged nearer than the channel plane than the interface between a gate insulator film provided on the upper side of the channel plane and the gate electrode. In this transistor, a groove is selectively formed in the surface of the semiconductor substrate, and a polycrystalline silicon deposited in the groove may be used as a mask to form impurity diffusion layers serving as source/drain regions to laminate and form a gate insulator film of a high dielectric film and a gate electrode. Alternatively, the polycrystalline silicon may be selectively formed to be used as a mask to elevate and form the impurity diffusion layer to laminate and form the gate insulator film and the gate electrode. Thus, it is possible to achieve both of the reduction of the resistance of the S/D diffusion layers and the reduction of the gate parasitic capacitance.
摘要:
A semiconductor device comprises a chip including a MISFET having a source and a drain, in which one of the source and the drain is connected to a second current supply node, an impedance element having a first terminal connected to the other of the source and the drain and a second terminal connected to a first current supply node, and a switching element, in which a well or a body electrode of the MISFET has an active state and a standby state, and is connected to a bias voltage generator for generating different voltages through the switching element, the threshold voltage V.sub.ths during standby state of the MISFET is higher than the threshold voltage V.sub.tha during active state of the MISFET, a voltage applied to a gate of the MISFET being able to take two stationary values, and the following relationship is satisfied V.sub.DD (1-V.sub.ths /V.sub.DD)
摘要:
In a MIS transistor, the top surfaces of source/drain regions (S/D diffusion layers) formed on a semiconductor substrate 1 are arranged nearer to a gate electrode than a channel plane on the semiconductor substrate, and the top surfaces of the source/drain regions are arranged nearer than the channel plane than the interface between a gate insulator film provided on the upper side of the channel plane and the gate electrode. In this transistor, a groove is selectively formed in the surface of the semiconductor substrate, and a polycrystalline silicon deposited in the groove may be used as a mask to form impurity diffusion layers serving as source/drain regions to laminate and form a gate insulator film of a high dielectric film and a gate electrode. Alternatively, the polycrystalline silicon may be selectively formed to be used as a mask to elevate and form the impurity diffusion layer to laminate and form the gate insulator film and the gate electrode. Thus, it is possible to achieve both of the reduction of the resistance of the S/D diffusion layers and the reduction of the gate parasitic capacitance.
摘要:
A semiconductor device having a MISFET with an EV source/drain structure has a gate electrode formed on part of a first p-type semiconductor layer via a gate insulating film. A second n+-type semiconductor layer is formed in the prospective source and drain regions of the first semiconductor layer via the gate electrode, and a third n−-type semiconductor layer is formed on the second semiconductor layer. Each of source and drain regions is formed from the second and third semiconductor layers. The upper edge of the source/drain regions is formed above the boundary between the first semiconductor layer and the gate insulating film. In an ON state, part of a depletion layer in the drain region is formed in the third semiconductor layer, and part of a depletion layer in the source region is formed in the second semiconductor layer.
摘要:
According to one embodiment, a semiconductor memory device includes a memory cell array, a first sense amplifier circuit, and a second sense amplifier circuit. The memory cell array includes a plurality of first memory cell units, a plurality of second memory cell units, a plurality of first interconnects, and a plurality of second interconnects. The first sense amplifier circuit is connected to the plurality of first interconnects. The second sense amplifier circuit is connected to the plurality of second interconnects. Heights of upper surfaces of interconnects are equal. At least one of a width of each of the plurality of second interconnects along a second direction perpendicular to the first direction and a thickness of each of the plurality of second interconnects along a third direction perpendicular to the first direction and the second direction is set smaller than each of the plurality of first interconnects, and the first sense amplifier circuit and the second sense amplifier circuit are disposed to face each other across the memory cell array.
摘要:
A data memory system is provided which includes a nonvolatile memory cell array, an error correction code generation circuit, an error correction code decoding circuit, and a first circuit. The nonvolatile memory cell array includes a plurality of memory cells which store digital data each having at least a value of “1” or “0” as a charge of a charge accumulation layer included in each memory cell, and use a difference between charges of the accumulation layer as a writing bit or an erasing bit. The nonvolatile memory cell array erases memory cells in units of pages, each page being formed of adjacent memory cells included in the plurality of memory cells.
摘要:
A data memory system includes a nonvolatile memory cell array which includes a plurality of memory cells, a page adjacently formed by the plurality of memory cells being collectively erased in the nonvolatile memory cell, at least binary pieces of digital data of “1” and “0” being stored as charges of a charge accumulation layer in the memory cell, a programming bit and an erasing bit being formed by a difference between the charges of the charge accumulation layer. And the system includes an error correcting code generation circuit, an error correcting code decoding circuit, and a code conversion circuit.
摘要:
A memory cell includes a floating gate electrode, a first inter-electrode insulating film and a control gate electrode. A peripheral transistor includes a lower electrode, a second inter-electrode insulating film and an upper electrode. The lower electrode and the upper electrode are electrically connected via an opening provided on the second inter-electrode insulating film. The first and second inter-electrode insulating films include a high-permittivity material, the first inter-electrode insulating film has a first structure, and the second inter-electrode insulating film has a second structure different from the first structure.