摘要:
A zero power identical pair of oppositely-oriented meniscus lens elements mounted in the projection light path, serves as curved mask support while compensating for optical anomalies such as beam shift and beam deviations produced by other transparent supports for the curved mask. The zero-power meniscus lens pair, without affecting the transmission beam characteristics, lets the beam diffract as efficiently as does a regular planar mask, thus preserving the partial coherence effects and resolution concepts of projection lithography. This simple but novel optics device is not only expected to clear several barriers for curved mask projection lithography but also find place in other applications where collimated or converging light beams have to travel extra paths without significant aberration.
摘要:
This single-actuator-and-cam, remotely adjustable, exterior vehicle rear-view mirror provides the driver with glare-free viewing toward the rear of the vehicle, by switching between a high-reflectivity position and a low-reflectivity position at the same view adjustment. The exterior rear-view mirrors are repositioned with only a single motor working with a rotary cam to scan all possible mirror positions. The single-motor mechanism increases the reliability of the mirror system. The single motor accomplishes both the directional alignment and the day/night reflectivity adjustment of the mirror by use of a cam which has positions for all predicted view positions, with two reflectivity positions for each view. This invention works equally well with flat wedge mirrors and wide-angle convex wedge mirrors. Since each position is unique, each directional/reflectivity position can be assigned a set of digital coordinates which can be stored for each vehicle driver and each glare condition, for an initial setting which can be easily, or even automatically, adjusted for changes as the driver desires. Customizing features include manual and vehicle driver identification controlled override, start-up reset, and glare threshold setting.
摘要:
A system is described for recycling radiation reflected by an illuminated patterning mask in a via-hole drilling or exposure tool. The mask is illuminated by high-energy laser radiation, and the illuminated region is imaged onto a substrate by a projection, proximity, or contact method. The source radiation is suitably shaped by a lens assembly and focused into an optical intensity homogenizer with the desired numerical aperture. The homogenizer has the base function of converting the focused beam to self-luminous light required for drilling of via-holes or other processes accomplished by the tool, while maintaining the numerical aperture of the beam. The homogenizer also participates in the radiation-recycling function. An apertured reflector allows radiation from the source to enter the homogenizer. The radiation passing through and exiting the homogenizer is image by a lens to illuminate a portion of the mask. Radiation incident on transparent areas of the mask coming propagates to the substrate, but radiation incident upon reflective regions of the mask coating is reflected back into the homogenizer. The apertured reflector at the entry port of the homogenizer has a reflective back surface which returns the majority of the light re-entering the homogenizer to the patterning mask. The effective illumination intensity is greatly increased by the recycling of the back-reflected radiation, allowing for a reduction in source power or decrease in exposure time for the drilling of via-holes or other exposure processes.
摘要:
Methods and systems for generating pulses of laser radiation at higher repetition rates than those of available excimer lasers are disclosed that use multiple electronic triggers for multiple laser units and arrange the timings of the different triggers with successive delays, each delay being a fraction of the interval between two successive pulses of a single laser unit. Methods and systems for exposing nanoscale patterns using such high-repetition-rate lasers are disclosed.
摘要:
A high-throughput, low cost, patterning platform is provided that is an alternative to conventional photolithography and direct laser ablation patterning techniques. The processing methods are useful for making patterns of microsized and/or nanosized structures having accurately selected physical dimensions and spatial orientation that comprise active and passive components of a range of microelectronic devices. Processing provided by the methods is compatible with large area substrates, such as device substrates for semiconductor integrated circuits, displays, and microelectronic device arrays and systems, and is useful for fabrication applications requiring patterning of layered materials, such as patterning thin film layers in thin film electronic devices.
摘要:
A compact light-beam homogenizer is realized by multiple reflections within internally-reflecting optical channels which are arranged in a folded configuration. The optical channels may be hollow with mirrored walls, or made of a solid transparent optical material. Light enters through an apertured mirror whose internally reflective surface sends back-reflected rays forward for recycling. Multiple entry ports may be provided for combining several beams or for reducing the intensity in the channels. The homogenizer may be used in reverse as a beam divider. Different shapes of the optical channels are provided for obtaining an effective emission surface of different shapes. Due to reflections from surfaces that are parallel to the optical axis, the numerical aperture of the input beams is preserved.
摘要:
Imaging systems that use a spatial light modulator (SLM), such as maskless lithography systems using a digital micromirror device (DMD), suffer from low throughput at high resolution because of the increase in the number of pixels to be imaged. A possible solution to this problem is provided by using multiple SLMs. However, packaging multiple SLMs on a suitable base is inefficient because, in an SLM, surrounding the active region, a large inactive region is required for the chip kerf and the connector fan-in; these inactive regions thus prevent close packing of the SLMs. This invention enables close packing of a large number of SLMs by arranging them in twin planes, such that the kerf and fan-in regions overlap substantially. Variations in the optical conjugate distances of different SLMs caused by the twin planarity are eliminated by incorporation of a twin-pane compensating mirror array that corresponds to the SLM array, and introduces a pathlength difference between different mirrors that is complementary to the pathlength difference between corresponding SLM chips. Depth-of-focus problems are thus eliminated. The invention enables significant throughput enhancement, up to 82%, in maskless lithography systems.
摘要:
This projection imaging system is capable of simultaneously exposing both the upper and lower sides of a substrate while providing high-resolution, a large exposure area, and high exposure throughput. The system comprises:(a) a single stage, holding a substrate, upper mask, and lower mask in fixed juxtaposition, that is capable of scanning in one direction, and when not scanning in that direction, capable of moving laterally in a dimension perpendicular to the scan direction so as to position itself for another scan parallel to the original scan;(b) an illumination system having an effective source plane of a predetermined shape, capable of simultaneously illuminating on both the upper and lower masks a region of the above predetermined shape;(c) an upper and lower projection system having an object to image magnification ratio of unity, each having a reverser assembly to render both the upper and lower images on the substrate in the same orientation as the mask pattern:(d) a fixed offset, lateral to the optical axis, is provided by each reverser assembly, between each mask and the substrate, the offsets for the two masks being equal and in opposite directions from the substrate; and(e) provision for additive illumination in overlap regions of areas exposed by adjacent scans such that the effect of the exposure dose delivered in the overlap regions is seamless and uniform with respect to the entire substrate.
摘要:
An internally-mirrored tube of constant cross-section, for use as a beam-shaper-uniformizer in an optical lithography tool, requires precision assembly, closely approaching total internal reflection, to be able to accept at the entry end a beam of laser light of specified numerical aperture, having an arbitrary cross-section and a non-uniform intensity profile, and deliver at the exit a beam having the same numerical aperture, the desired cross-sectional shape, and a substantially uniform intensity profile across the illuminated area. Imperfections at the edges of the component slabs would interfere with operation. The difficulty of machining internal surfaces to mirror smoothness, and the difficulty of applying mirror finishes to internal surfaces, suggests that the uniformizer be assembled from mirrored slabs cemented together. Achieving precision without breakage or scuffing of mirrors is difficult. Precision and ease are supplied by a technique of using two parts, two of rectangular cross-section with mirrored flat side, and four (two complementary pairs) of trapezoidal cross-section with a mirrored 60.degree. bevel-edge, in a stacked slab assembly. The stacked slabs are adjusted for alignment and cemented by external beads of epoxy, or clamped permanently.
摘要:
A projection imaging system is described for patterning large, flexible substrates at high exposure speeds and desired resolution, the substrates being in the form of a continuous band fed from a roller for cost-effective electronic module manufacturing. From the continuous band, segments of one panel size are sequentially exposed one at a time. The segment being exposed is held rigidly on a scanning stage, on which is also mounted a mask containing the pattern to be formed on the substrate. The imaging subsystem is stationary and situated above the scanning stage. The mask is illuminated with a hexagonal illumination beam and a region of similar shape is imaged on the substrate. The stage is programmed to scan the mask and substrate simultaneously across the hexagonal regions so as to pattern one whole panel. Provision is made for suitable overlap between the complementary intensity profiles produced by the hexagonal illumination, which ensures seamless joining of the scans and uniform patterning of an entire panel without image stitching errors. For handling the roll substrate so that the substrate segment being exposed remains held rigidly to the scanning stage while the stage moves it in two dimensions without damaging the integrity of the substrate band, mechanisms are provided in the projection system which include provision of managed slack lengths in the substrate band, controlled rotary motions of the supply and take-up substrate rollers, and synchronized, laterally sliding assemblies for the rollers.