摘要:
Systems and methods for creating beams from a non-terrestrial vehicle (e.g., unmanned aerial vehicle (UAV)) toward user terminals and gateways on the ground. Another aspect of the disclosure includes systems and methods for switching the UAV beams toward the user terminals and gateways as the UAV moves in its orbit. Still another aspect of the disclosure describes systems and methods for routing traffic from user terminals to the internet via multiple gateways.
摘要:
A system for computing accurate position location coordinates of tags used for tracking assets and people include a first network of access points to help compute a first approximation of the tag position location, a second network of access points underlying the first network for fine position location determination, and a position location server for controlling the second network of access points and computing position location based on round trip delay measurements between tags and the access points.
摘要:
Systems and methods for detecting an unmanned aerial vehicle (UAV). Network access (for example, to the Internet) may be provided by detecting a UAV and fixing one or more beams from one or more ground terminals to the UAV. In one embodiment, the detection of a UAV includes forming and pointing beams from a ground terminal and ground gateways toward the UAV. The ground terminal may be configured to autonomously steer its antenna beam during initial installation to detect the reference signal from a UAV. In one variant, the ground terminals are steered to more finely track the position of the UAV based on a signal quality metric such as received signal strength and the UAV real-time position location coordinates. In one embodiment, the ground terminal antenna is initially manually pointed toward the UAV, and thereafter allowed to automatically steer to track the position of the UAV. In another embodiment the UAV antenna is steered toward a ground terminal using signal quality received from the ground terminal and real-time position coordinates and orientation of the UAV.
摘要:
Systems and methods for providing broadband internet access to mobile platforms such as vehicles, aircraft, and portable devices, using a network of one or more entities such as drones/unmanned aerial vehicles (UAVs). In one embodiment, the drone communication system comprises an antenna sub-system, a radio sub-system and a data switching sub-system. The mobile platforms comprise antenna and radio sub-systems to communicate with the drones, detect changes in the mobile platforms azimuth and elevation changes, and adjust the mobile platform's antenna beam to compensate for the orientation changes to optimally point toward the drones. The exemplary mobile platform further comprises methods to detect the need for handoff to a different drone and to carry out the handoff.
摘要:
Systems and methods configured to form and point beams from one or more unmanned aerial vehicles (UAVs) toward a target coverage area on the ground. One embodiment describes dividing the target coverage area on the ground among multiple UAVs when each UAV antenna system generates static beams. Another embodiment describes dividing the target coverage area on the ground among multiple UAVs when their antenna systems are capable of dynamically steering their respective beams. Another set of embodiments describe systems and method to allow multiple UAVs to provide service in the same area on the ground using the same spectrum.
摘要:
Systems and methods for mitigating the effects of atmospheric conditions such as rain, fog, cloud in a broadband access system using drone/UAVs. In one embodiment, terminal and drone radio and transmission medium fixture sub-systems comprise multiple transmission media. In one embodiment, in response to changes in atmospheric conditions the drone radio sub-system switches transmission medium to reduce the effects of atmospheric conditions. In another embodiment, the terminal and drone radio sub-systems equalize the data rates among terminals in response to changes in atmospheric conditions observed by different terminals. In another embodiment, the drone radio sub-system adjusts the transmit power on the downlink to different terminal according to fading due to atmospheric conditions on each link.
摘要:
Systems and methods for detecting an unmanned aerial vehicle (UAV). Network access (for example, to the Internet) may be provided by detecting a UAV and fixing one or more beams from one or more ground terminals to the UAV. In one embodiment, the detection of a UAV includes forming and pointing beams from a ground terminal and ground gateways toward the UAV. The ground terminal may be configured to autonomously steer its antenna beam during initial installation to detect the reference signal from a UAV. In one variant, the ground terminals are steered to more finely track the position of the UAV based on a signal quality metric such as received signal strength. In one embodiment, the ground terminal antenna is initially manually pointed toward the UAV, and thereafter allowed to automatically steer to track the position of the UAV.
摘要:
Systems and methods configured to form and point beams from one or more unmanned aerial vehicles (UAVs) toward a target coverage area on the ground. One embodiment describes dividing the target coverage area on the ground among multiple UAVs when each UAV antenna system generates static beams. Another embodiment describes dividing the target coverage area on the ground among multiple UAVs when their antenna systems are capable of dynamically steering their respective beams. Another set of embodiments describe systems and method to allow multiple UAVs to provide service in the same area on the ground using the same spectrum.
摘要:
The present disclosure describes the system and methods for providing broadband internet access to homes and enterprises using a network of aerial platforms such as drones/UAVs/balloons. The drone communication system is composed of an antenna sub-system, a radio sub-system and a data switching sub-system. Drones form and point beams toward ground terminals in different areas in a space division multiple access scheme. Ground terminals are composed of an antenna sub-system and a radio sub-system. Ground terminals search for the drone from which they receive the strongest signals. Drone and ground terminals comprise of methods and systems to calibrate receive and transmit antenna elements. Drone radio sub-system keeps track of the drone's position and orientation changes and adjust drone's antenna beam accordingly to point to the same location on the ground as the drone moves. Depending on the changes in drone's position and orientation, the drone radio sub-system may switch the antenna aperture and/or the antenna fixture that is used to form a beam toward a specific ground terminal. Drones communicate with the terminals using a space and time division multiple access scheme.
摘要:
Systems and methods configured to form and manage different types of beams toward target ground terminals to “optimally” communicate with the terminals. In one set of embodiments, the UAV generates a set of beams to cover cells on the ground, the beams are divided into groups, and the UAV communications system deterministically and sequentially turns a subset of the beams on/off to reduce cross-beam interference and increase system throughput. In another embodiment, in order to increase throughput, the UAV communications system determines the highest data rate on the downlink and uplink that are decodable at the receiver given the received signal to interference plus noise ratio (SINR) while maintaining a low packet error rate. Systems and methods are described to determine the UAV antenna pattern toward different terminals needed for SINR calculation and data rate determination.