Abstract:
A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.
Abstract:
An artificial bone includes a bone-shaped hollow metal body confining a sealed space and having two opposite closed ends, and a porous structure disposed in the sealed space. A method for making the artificial bone includes the steps of: positioning a metal tube in a bone-shaped mold cavity of a mold, hydro-forming the metal tube into a bone-shaped hollow tube in the bone-shaped mold cavity by injecting a high pressure fluid into the metal tube, disposing a crumple of metal wire into the bone-shaped hollow tube, depositing a metal coating on the metal wire and an inner surface of the bone-shaped hollow tube to form a porous structure in the bone-shaped hollow tube, and sealing the bone-shaped hollow tube.
Abstract:
A method is provided for depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The wear resistant surface of the medical implant device may be formed by a Laser Based Metal Deposition (LBMD) method such as Laser Engineered Net Shaping (LENS). The wear resistant surface may include a blend of multiple different biocompatible materials. Further, functionally graded layers of biocompatible materials may be used to form the wear resistant surface. Usage of a porous material for the base may promote bone ingrowth to allow the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity, particularly when applied to bearing surfaces such as artificial joint bearing surfaces or a dental implant bearing surfaces. An antimicrobial material such as silver may be deposited in combination with a metal to form an antimicrobial surface deposit.
Abstract:
A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.
Abstract:
An intrauterine contraceptive device comprising a carrier body (1) and an active metallic alloy (4), characterized in that the active metallic alloy is of the formula ZnxCuyMnzAuk (I) or ZnxCuyMnzAgk (II), wherein x+y+z+k=100 weight %, x is in the range from approximately 18 to 30 weight %, z is in the range from approximately 0.5 to 3 weight %, and k is in the range from approximately 3 to 12 weight %, y being the balance.
Abstract translation:1.一种子宫内避孕装置,其特征在于,所述活性金属合金具有式Zn x Cu y Mn z A k(I)或Zn x Cu y Mn z A g k(II),其中x + y + z + k = 100重量%,x在约18至30重量%的范围内,z在约0.5至3重量%的范围内,k在约3至12重量%的范围内,y为余量。
Abstract:
A method is provided for depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The wear resistant surface of the medical implant device may be formed by a Laser Based Metal Deposition (LBMD) method such as Laser Engineered Net Shaping (LENS). The wear resistant surface may include a blend of multiple different biocompatible materials. Further, functionally graded layers of biocompatible materials may be used to form the wear resistant surface. Usage of a porous material for the base may promote bone ingrowth to allow the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity, particularly when applied to bearing surfaces such as artificial joint bearing surfaces or a dental implant bearing surfaces. An antimicrobial material such as silver may be deposited in combination with a metal to form an antimicrobial surface deposit.
Abstract:
A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.
Abstract:
A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.
Abstract:
An endoprosthesis component and a method for producing an endoprosthesis component is disclosed. The endoprosthesis component comprises a body predefining the shape of the endoprosthesis component. On surface portions with which the endoprosthesis component in the implanted state is in contact with human tissue, the body is covered with an outer layer which comprises a nitride, an oxynitride or an oxide based on a refractory metal and which contains silver and/or copper. An intermediate layer is arranged between the outer layer and the body in such a way that parts of the intermediate layer are accessible from the outside. The endoprosthesis component enables generation of a long-term antimicrobial action with the outer layer and, in addition, action on the surrounding tissue from the intermediate layer.
Abstract:
A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.