Abstract:
A continuous synthesis system of urea, including: a reactor, a mixing buffer tank for accommodating a first raw material, a feeding pump for pumping the first raw material to the reactor, a pressure regulating valve connected to the reactor to transfer a second raw material and regulate a pressure of the second raw material, a first heat exchanger connected to the reactor to regulate a temperature inside the reactor to a first preset temperature, and a back pressure valve connected to an end of the reactor away from the feeding pump to maintain a pressure of the continuous synthesis system at a preset pressure. The second raw material is gaseous. The second raw material is fed to the reactor through the pressure regulating valve to react with the first raw material in the reactor to generate a target product.
Abstract:
Disclosed is an apparatus and method for providing asymmetric oscillations to a container. The container may include a fluid, a particle, and/or a gas. A vibration driver attached to the container provides asymmetric oscillations. A controller connected to the vibration driver controls an amplitude, frequency, and shape of the asymmetric oscillations. An amplifier amplifies the asymmetric oscillations in response to the controller. A sensor disposed on the vibration driver provides feedback to the controller.
Abstract:
Disclosed is an apparatus and method for providing asymmetric oscillations to a container. The container may include a fluid, a particle, and/or a gas. A vibration driver attached to the container provides asymmetric oscillations. A controller connected to the vibration driver controls an amplitude, frequency, and shape of the asymmetric oscillations. An amplifier amplifies the asymmetric oscillations in response to the controller. A sensor disposed on the vibration driver provides feedback to the controller.
Abstract:
Method of reducing fouling in an elastomer polymerization process that includes providing a reactor capable of housing an industrial-scale elastomer polymerization reaction, and applying a mechanical force to the reactor so as to create a vibration in at least one wall of the reactor, in which fouling is reduced in the reactor. In one embodiment the reaction is an industrial scale butyl polymerization reaction and the reactor is a butyl polymerization reactor.
Abstract:
A method and apparatus for fluid-liquid reactions including gas-liquid and liquid-liquid reactions. The method and apparatus is suitable for mixing a fluid phase species and a liquid phase species to facilitate chemical reaction between said phases. The apparatus comprises a reactor vessel with a plurality of orificed plates and flow control means which initiates and maintains uniform mixing and efficient dispersion of a fluid-liquid mixture within the reactor vessel.
Abstract:
A resonant shaker includes a support tray for supporting a target carrier. A sensor generates an electrical signal that is related to an acceleration of the support tray. A linear drive motor includes an armature that is coupled to the support tray. The linear drive motor provides an oscillating drive force to the support tray in response to a drive current applied to the linear drive motor. The resonant shaker also includes a controller. The controller receives the electrical signal from the sensor and a drive signal that is related to the drive current. The controller transmits a modified drive current to the linear drive motor in response to a predetermined phase relationship between the electrical signal and the drive signal.
Abstract:
An apparatus and method for a continuous phase-separated synthesis of particulates, and in particular an apparatus and method for a continuous polymerization which utilizes a reactor vessel having stationary annular baffles through which an aqueous medium is circulated, and to which a monomer and initiator are added. During polymerization, as the fluid circulates through the reactor vessel, the eddies created by the baffles enhance a thorough and even mixing of the fluid.
Abstract:
An autothermal reactor for the generation of a hydrogen-containing product gas stream from a feed gas stream comprises a reactor vessel having a feed gas stream inlet end and a product gas outlet end. A partial oxidation catalyst is located within the reactor vessel and positioned in the path of the feed gas stream. A steam methane reforming catalyst is located within the reactor vessel and positioned downstream from the partial oxidation catalyst in the path of the feed-gas stream. A first inlet is provided to introduce a first feed gas stream component selected from the feed gas component stream group comprising a hydrocarbon fuel, oxidant, and steam. The first inlet is located at the fuel gas stream inlet end of the reactor vessel. A mechanism to pulsate is associated with the first inlet to pulsate the flow of the first feed gas stream component into the autothermal reactor.
Abstract:
A device (100) for producing fullerenes includes an IEC vacuum chamber (110) which has a central grid-like electrode (112) and a conductive outer shell (111) that are connected to a pulsed source of high voltage (114) and provide an electric field within the chamber (110). The applied voltage supports the creation of a plasma at the inner core of the chamber near the electrode (112). A carbon-based gas, which is introduced into the chamber (110), possibly along with an inert buffer gas, id dissociated into component carbon and hydrogen ions that are separated and the carbon ions recombined into fullerenes that appears as a soot. The device (100) includes a soot extraction mechanism for removing and collecting the fullerenes.
Abstract:
Process for producing carbon molecular sieves for separating oxygen and nitrogen by treating a carbonaceous product with inert gas and steam in a vibrating oven and further treating said product with benzene at a high temperature in a vibrating oven to thereby narrow the existing pores.