Abstract:
Method of reducing fouling in an elastomer polymerization process that includes providing a reactor capable of housing an industrial-scale elastomer polymerization reaction, and applying a mechanical force to the reactor so as to create a vibration in at least one wall of the reactor, in which fouling is reduced in the reactor. In one embodiment the reaction is an industrial scale butyl polymerization reaction and the reactor is a butyl polymerization reactor.
Abstract:
The present invention provides methods and systems for obtaining oil or a combustible gas from oil shale or coal, by subjecting oil shale or coal to microwave radiation for a time sufficient to at least partially decompose or extract oil, gas, or other carbon-containing materials from the oil shale and coal. The disclosed processes and systems use microwave radiation comprising at least one frequency component in the range of from about 4 GHz to about 18 GHz.
Abstract:
The present invention provides methods for decomposing and extracting compositions for the recovery of petroleum-based materials from composites comprising those petroleum-based materials, comprising subjecting the compositions and/or composites to microwave radiation, wherein the microwave radiation is in the range of from about 4 GHz to about 18 GHz. The present invention also provides for products produced by the methods of the present invention and for apparatuses used to perform the methods of the present invention.
Abstract:
A process includes periodically or continuously introducing an olefin monomer and periodically or continuously introducing a catalyst system or catalyst system components into a reaction mixture within a reaction system, oligomerizing the olefin monomer within the reaction mixture to form an oligomer product, and periodically or continuously discharging a reaction system effluent comprising the oligomer product from the reaction system. The reaction system includes a total reaction mixture volume and a heat exchanged portion of the reaction system comprising a heat exchanged reaction mixture volume and a total heat exchanged surface area providing indirect contact between the reaction mixture and a heat exchange medium. A ratio of the total heat exchanged surface area to the total reaction mixture volume within the reaction system is in a range from 0.75 in−1 to 5 in−1, and an oligomer product discharge rate from the reaction system is between 1.0 (lb)(hr−1)(gal−1) to 6.0 (lb)(hr−1)(gal−1).
Abstract:
The present invention is directed at an improved process for generating heavier hydrocarbons from carbon dioxide and/or carbon monoxide and water using tandem photochemical-thermochemical catalysis in a single reactor. Catalysts of the present disclosure can comprise photoactive material and deposits of conductive material interspersed on the surface thereof. The conductive material can comprise Fischer-Tropsch type catalysts.
Abstract:
A process of preparing a liquid reaction product in a column reactor, which reactor comprises a space between coaxial tubular interior surfaces comprising an inner interior surface and an outer interior surface, comprising the steps, a) feeding the liquid precursor reactant material through an inlet port in the outer interior surface, b) flowing the liquid precursor material through the space between the outer interior surface and the inner interior surface, c) subjecting the liquid precursor material in step (b) to reaction conditions to form the liquid reaction product, d) passing the liquid polymer composition through an outlet port in the outer interior surface, characterised in that the distance of the inner internal surface and the outer interior surface is less than 20 mm and the ratio of the cross-sectional diameter (D′) of the inner interior surface to the cross-sectional diameter (D″) of the outer interior surface is at least 0.8:1. Also claimed is an apparatus suitable for carrying out chemical reactions. Derisably the apparatus and process can be used to make liquid polymer compositions.
Abstract:
A method for reducing the formation of deposits on the inner walls of a tubular heat exchanger through which a petroleum-based liquid is flowing comprises applying one of fluid pressure pulsations to the liquid flowing through the tubes of the exchanger and vibration to the heat exchanger to effect a reduction of the viscous boundary layer adjacent the inner walls of the tubular heat exchange surfaces. Reduction of the viscous boundary layer at the tube walls not only reduces the incidence of fouling with its consequential beneficial effect on equipment life but it also has the desirable effect of promoting heat transfer from the tube wall to the liquid in the tubes. Fouling and corrosion are further reduced by the use of a coating on the inner wall surfaces of the exchanger tubes.
Abstract:
Systems, reactors, and processes for regenerating ionic liquid using catalyst. A plurality of tubular reactors are provided having a first end and a second end and catalyst particles disposed in the tubular reactor between the first end and the second end. A line supplies separated ionic liquid catalyst to the first end of the tubular reactor. Hydrogen is also supplied. Regenerated ionic liquid catalyst is recovered from the second end of the tubular reactor. The inner surface of the tubular reactor is preferably non-corrosive or non-reactive. A fluoropolymer lining may be used. The tubular reactors are modular, and may be changed out with the catalyst inside when the catalyst are to be replaced.
Abstract:
Pressure processing systems disclosed herein comprise rotating fluid flow paths. Transfer of angular momentum between the working fluid and the fluid flow path may be configured to increase pressure within the system and/or recover energy used to increase pressure within the system. Rotation of pressure processing systems may be configured to alter working fluid pressure within the pressure processing system. Filtration and/or chemical processes may be performed within a pressure processing portion of such systems. Working fluid may be introduced or recovered from the system at various radial positions.
Abstract:
A self-contained system for the generation of electrical energy from biomass by gasification combines several process units in one self-contained system. The global properties are greater than the sum of the individual properties of the process units.